Skip to main content
Log in

Use of breakdown coefficients in turbulent jets to determine the universal exponent μ

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Second-order moments of the breakdown coefficients q r,l of the squared velocity derivative in plane and circular jets indicate a value of the exponent μ which is larger than that obtained by other methods using the same data or that previously reported by other workers using the same method on atmospheric data. The difference may be due to a failure of the present data to satisfy the first condition of scale similarity, possibly because of the relatively small Reynolds numbers of the laboratory flows. The dependence of the variance of ln q r,l on the length scale l appears to be independent of Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A., Phan-Thien, N., and Chambers, A. J.: 1980b, ‘Taylor's Hypothesis and the Probability Density Functions of Temporal Velocity and Temperature Derivatives in a Turbulent Flow’, J. Fluid Mech. 100, 193–208.

    Google Scholar 

  • Antonia, R. A., Satyaprakash, B. R., and Hussain, A. K. M. F.: 1980a, ‘Measurements of Dissipation Rate and Some Other Characteristics of Turbulent Plane and Circular Jets’, Phys. Fluids 23, 695–700.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., and Satyaprakash, B. R.: 1981, ‘Reynolds Number Dependence of High-Order Moments of the Streamwise Turbulent Velocity Derivative’, Boundary-Layer Meteorol. 21, 159–171.

    Google Scholar 

  • Antonia, R. A., Satyaprakash, B. R., and Hussain, A. K. M. F.: 1982, ‘Statistics of Fine Scale Velocity in Turbulent Plane and Circular Jets’, J. Fluid Mech. 119, 55–89.

    Google Scholar 

  • Bradley, E. F., Antonia, R. A., and Chambers, A. J.: 1981, ‘Turbulent Reynolds Number and the Turbulent Kinetic Energy Balance in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 21, 183–197.

    Google Scholar 

  • Frenkiel, F. N. and Klebanoff, P. S.: 1975, ‘On the Lognormality of the Small Scale Structure of Turbulence’, Boundary-Layer Meteorol. 8, 173–200.

    Google Scholar 

  • Frisch, U., Sulem, P-L., and Nelkin, M.: 1978, ‘A Simple Dynamical Model of Intermittent Fully Developed Turbulence’, J. Fluid Mech. 87, 719–736.

    Google Scholar 

  • Gibson, C. H. and Masiello, P. J.: 1972, ‘Observations of the Variability of Dissipation Rates of Turbulent Velocity and Temperature Fields’, in M. Rosenblatt and C. W. Van Atta (eds.), Lecture Notes in Physics, Vol. 12, Berlin, Springer-Verlag, pp. 427–453.

  • Gurvich, A. S. and Yaglom, A. M.: 1967, ‘Breakdown of Eddies and Probability Distributions for Small Scale Turbulence’, Phys. Fluids 10, S59-S65.

    Google Scholar 

  • Kholmyanskiy, M. Z.: 1973, ‘Measurements of the Turbulence Breakdown Coefficient’, Izv. Atmos. Ocean. Phys. 9, 801–811.

    Google Scholar 

  • Kolmogorov, A. N.: 1962, ‘A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number’, J. Fluid Mech. 13, 82–85.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1975, in J. L. Lumley (ed.), Statistical Fluid Mechanics, Vol. 2, MIT Press.

  • Novikov, E. A.: 1971, ‘Intermittency and Scale Similarity in the Structure of a Turbulent Flow’, Prikl. Math. Mech. 35, 266–277.

    Google Scholar 

  • Novikov, E. A. and Stewart, R. W.: 1964, ‘The Intermittency of Turbulence and the Spectrum of Energy Dissipation Fluctuations’, Izv. Geophys. 3, 408–413.

    Google Scholar 

  • Obukhov, A. M.: 1962, ‘Some Specific Features of Atmospheric Turbulence’, J. Fluid Mech. 13, 77–81.

    Google Scholar 

  • Van Atta, C. W. and Antonia, R. A.: 1980, ‘Reynolds Number Dependence of Skewness and Flatness Factors of Turbulent Velocity Derivatives’, Phys. Fluids 23, 252–257.

    Google Scholar 

  • Van Atta, C. W. and Yeh, T. T.: 1973, ‘The Structure of Internal Intermittency in Turbulent Flows at Large Reynolds Number Experiments on Scale Similarity’, J. Fluid Mech. 59, 537.

    Google Scholar 

  • Van Atta, C. W. and Yeh, T. T.: 1975, ‘Evidence for Scale Similarity of Internal Intermittency in Turbulent Flows at Large Reynolds Numbers’, J. Fluid Mech. 71, 417–440.

    Google Scholar 

  • Yaglom, A. M.: 1966, ‘The Influence of Fluctuations in Energy Dissipation on the Shape and Turbulence Characteristics in the Inertial Interval’, Sov. Phys. Dokl. 11, 26–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satyaprakash, B.R., Antonia, R.A., Britz, D.H. et al. Use of breakdown coefficients in turbulent jets to determine the universal exponent μ. Boundary-Layer Meteorol 24, 77–87 (1982). https://doi.org/10.1007/BF00121801

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121801

Keywords

Navigation