Skip to main content
Log in

Quantum mechanical law of corresponding states

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The structure and thermodynamic properties of the quantum liquids 4He and H2 near the liquid-gas critical point are calculated with the effective potential approximation, in which the two-body Slater sum replaces the Boltzmann factor; the statistical mechanics problem is formally equivalent to that of a fictitious classical fluid. Approximate integral equation methods from the theory of classical fluids are then used to calculate the critical point parameters and the radial distribution function g(r). The results from the approximate integral equations are compared both with experimental data and with the results of an exact Monte Carlo calculation for the fictitious fluid for a range of densities at the temperatures 7 and 8 K in 4He and 36 and 40 K in H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. deBoer, Physica 14, 139 (1948); J. deBoer and R. J. Lunbeck, Physica 14, 510 (1948).

    Google Scholar 

  2. L. H. Nosanow, J. Low Temp. Phys. 26, 613 (1977) and references cited therein.

    Google Scholar 

  3. L. W. Bruch, P. J. Fortune, and D. H. Berman, J. Chem. Phys. 61, 2626 (1974).

    Google Scholar 

  4. A. D. Klemm and R. G. Storer, Austral. J. Phys. 26, 43 (1973). A. D. Klemm, Ph. D Thesis, The Flinders University of South Australia, (1971), unpublished.

    Google Scholar 

  5. L. W. Bruch and I. J. McGee, Paper presented at the International Conference on Statistical Physics, Budapest (1976), unpublished.

  6. R. O. Watts and I. J. McGee, Liquid State Chemical Physics (Wiley-Interscience, 1976).

  7. O. Weres, J. Chem. Phys. 64, 840 (1976).

    Google Scholar 

  8. W. G. Gibson, Mol. Phys. 28, 793 (1974); 30, 13 (1975).

    Google Scholar 

  9. L. D. Fosdick, SIAM Rev. 10, 315 (1968); L. D. Fosdick and R. C. Jacobson, J. Comp. Phys. 7, 157 (1971).

    Google Scholar 

  10. W. B. Brown, J. Chem. Phys. 28, 522 (1958); P. J. Price, Am. J. Phys. 43, 193 (1975).

    Google Scholar 

  11. N. D. Mermin, J. Phys. Soc. Japan Suppl. 26, 203 (1969).

    Google Scholar 

  12. L. W. Bruch and I. J. McGee, J. Chem. Phys. 52, 5884 (1970).

    Google Scholar 

  13. R. Gengenbach, Ch. Hahn, W. Schrader, and J. P. Toennies, Theor. Chim. Acta (Berl.) 34, 199 (1974).

    Google Scholar 

  14. W. England and R. D. Etters, Mol. Phys. 32, 857 (1976).

    Google Scholar 

  15. A. A. Broyles, J. Chem. Phys. 33, 456 (1960).

    Google Scholar 

  16. R. O. Watts, J. Chem. Phys. 48, 50 (1968).

    Google Scholar 

  17. D. Henderson and R. D. Murphy, Phys. Rev. A 6, 1224 (1972).

    Google Scholar 

  18. R. O. Watts, J. Chem. Phys. 50, 1358 (1969).

    Google Scholar 

  19. R. D. Murphy, in Theoretical Chemistry: Advances and Perspectives, Vol. 3., H. Eyring and D. Henderson, eds. (Academic Press, 1978), p. 143.

  20. L. W. Bruch, I. J. McGee, and R. O. Watts, Phys. Lett. 50A, 315 (1974).

    Google Scholar 

  21. T. Burke, J. L. Lebowitz, and E. Lieb, Phys. Rev. 149, 118 (1966); T. S. Nilsen and P. C. Hemmer, J. Stat. Phys. 1, 175 (1969).

    Google Scholar 

  22. J. P. Hansen and J. J. Weis, Phys. Rev. 188, 314 (1969).

    Google Scholar 

  23. L. M. Sander, M. Bretz, and M. W. Cole, Phys. Rev. B 14, 61 (1976); see also G. S. Estevez, H. Gould, and M. W. Cole (to be published).

    Google Scholar 

  24. B. L. Weiss, H. N. Robkoff, and R. B. Hallock, Phys. Lett. 64A, 400 (1978).

    Google Scholar 

  25. R. W. Hill and O. V. Lounasmaa, Phil. Trans. Roy. Soc. A 252, 357 (1960).

    Google Scholar 

  26. H. W. Woolley, R. B. Scott, D. Brickwedde and F. G. Brickwedde, J. Res. NBS 41, 379 (1948).

    Google Scholar 

  27. R. D. Murphy and R. O. Watts, J. Low Temp. Phys. 2, 507 (1970).

    Google Scholar 

  28. P. G. Mikolaj and C. J. Pings, J. Chem. Phys. 46, 1412 (1967).

    Google Scholar 

  29. W. Kunkin and H. L. Frisch, Phys. Rev. 177, 282 (1969).

    Google Scholar 

  30. K. A. Kobe and R. E. Lynn, Jr., Chem. Phys. 52, 117 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the National Science Foundation.

Work supported in part by the National Research Council of Canada.

Work supported in part by the National Science Foundation Award No. SMI77-17458.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruch, L.W., McGee, I.J. & Murphy, R.D. Quantum mechanical law of corresponding states. J Low Temp Phys 35, 185–204 (1979). https://doi.org/10.1007/BF00121729

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121729

Keywords

Navigation