Skip to main content
Log in

Low-temperature electrical resistance of disordered (Fe1−x Ni x )75P16B6Al3 alloys

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We present a systematic study, to very low temperatures (<20 mK), of the electrical resistance of an amorphous metallic system, (Fe1−x Ni x )75P16B6Al3, with x varying from 0 to 1, so as to go from a magnetic to a nonmagnetic state. In all the alloys studied a minimum in the temperature range 8–40 K is observed. The resistance is found to increase as −β lnT below T min, and as +AT 2 above it. While T min appears to have a maximum around x = 0.5, no systematic concentration dependence is found in the variation of the other parameters describing the characteristic features of the resistivity. The experimental data are compared with the predictions from several theories in their low-temperature limits. It is found that the relation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabiqaaiaacaGaaeqabaWaaeaaeaaakeaacaqGWbGaeSipIO% JaaeylaiaabYgacaqGUbGaaeikaiaabsfadaahaaWcbeqaaiaabkda% aaGccqGHRaWkcqqHuoardaahaaWcbeqaaiaaikdaaaaaaa!3CA4!\[{\rm{p}} \sim {\rm{ - ln(T}}^{\rm{2}} + \Delta ^2 \] derived from the tunneling model adequately describes the low-temperature resistivity in these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Gyorgy, H. J. Leamy, R. C. Sherwood, and H. S. Chen, in Magnetism and Magnetic Materials (AIP Conference Proceedings, No. 29, American Institute of Physics, New York, 1975), p. 198.

    Google Scholar 

  2. H. S. Chen, Acta Met. 24, 153 (1976).

    Google Scholar 

  3. Ö. Rapp, J. E. Grindborg, and K. V. Rao, J. Appl. Phys. 49, 1733 (1978).

    Google Scholar 

  4. Y. Waseda and J. G. Wright, Phys. Stat. Sol. b 81, k37 (1977).

    Google Scholar 

  5. K. Hirata, Y. Waseda, A. Jain, and R. Srivastava, J. Phys. F 7, 419 (1977).

    Google Scholar 

  6. A. Berrada, M. F. Lapierre, B. Loegel, P. Panissod, C. Robert, and J. Beille, Physica 86–88B, 790 (1977).

    Google Scholar 

  7. J. Logan, and M. Yung, J. Non-Cryst. Solids 21, 151 (1976).

    Google Scholar 

  8. A. K. Sinha, Phys. Rev. B 1, 4541 (1970).

    Google Scholar 

  9. D. Korn, W. Mürer, and G. Zibold, J. Phys. (Paris) Coll. Suppl. J. Phys. (Paris) 35, C4–257 (1974).

    Google Scholar 

  10. J. H. Mooij, Phys. Stat. Sol. a 17, 521 (1973).

    Google Scholar 

  11. R. Hasegawa and J. A. Dermon, Phys. Lett. 42A, 407 (1973).

    Google Scholar 

  12. H. Gudmundsson, H. U. Åström, D. New, K. V. Rao, and H. S. Chen, J. Phys. (Paris) Coll. C6, Suppl. J. Phys. (Paris) 39, C6–943 (1978).

    Google Scholar 

  13. H. S. Chen and B. K. Park, Acta Met. 21, 395 (1973).

    Google Scholar 

  14. R. Hasegawa, W. A. Hines, L. E. Kabacoff, and P. Duwez, Solid State Comm. 20, 1035 (1976).

    Google Scholar 

  15. L. Berger, Physica 91B, 31 (1977), in Int. Conf. on Transition Metals, Toronto, 1977 (to be published).

    Google Scholar 

  16. R. W. Cochrane, R. Harris, J. O. Ström-Olsen, and M. J. Zuckermann, Phys. Rev. Lett. 35, 676 (1975).

    Google Scholar 

  17. R. W. Cochrane and J. O. Ström-Olsen, J. Phys. F 7, 1799 (1977).

    Google Scholar 

  18. Ö. Rapp, S. M. Bhagat, and Ch. Johannesson, Solid State Comm. 21, 83 (1977).

    Google Scholar 

  19. A. Madhukar and R. Hasegawa, J. Phys. (Paris) Coll. Suppl. J. Phys. (Paris) 35, C4–291 (1974).

    Google Scholar 

  20. R. Hasegawa, Phys. Lett. 38A, 5 (1972).

    Google Scholar 

  21. R. Hasegawa and C. C. Tsuei, Phys. Rev. B 1, 214 (1971).

    Google Scholar 

  22. F. J. Ohkawa and K. Yosida, J. Phys. Soc. Japan 43, 1545 (1977).

    Google Scholar 

  23. K. Froböse and J. Jäckle, J. Phys. F 7, 2331 (1977).

    Google Scholar 

  24. L. V. Meisel and P. J. Cote, Phys. Rev. B 15, 2970 (1977); P. J. Cote and L. V. Meisel, Phys. Rev. Lett. 39, 102 (1977).

    Google Scholar 

  25. S. R. Nagel, Phys. Rev. B 16, 1694 (1977).

    Google Scholar 

  26. D. Markowitz, Phys. Rev. B 15, 3617 (1977).

    Google Scholar 

  27. J. M. Ziman, Phil. Mag. 6, 1013 (1961).

    Google Scholar 

  28. P. W. Anderson, B. I. Halperin, and C. M. Varma, Phil. Mag. 25, 1 (1972).

    Google Scholar 

  29. N. Rivier and M. J. Zuckermann, Phys. Rev. Lett. 21, 904 (1968).

    Google Scholar 

  30. F. J. Blatt, in Physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968), p. 185.

    Google Scholar 

  31. S. R. Nagel, J. Vassiliou, P. M. Horn, and B. C. Giessen, Phys. Rev. B 17, 462 (1978).

    Google Scholar 

  32. G. R. Gruzalski, J. W. Weymouth, D. J. Sellmyer, and B. C. Giessen, in Amorphous Magnetism II, R. Levy and R. Hasegawa, eds. (Plenum, New York, 1977), p. 235.

    Google Scholar 

  33. W. L. Johnson and S. J. Poon, J. Appl. Phys. 46, 1787 (1975).

    Google Scholar 

  34. K. V. Rao, et al., to be published.

  35. R. W. Cochrane, F. T. Hedgcock, B. J. Kästner, and W. B. Muir, J. Phys. (Paris) Coll. C6, Suppl. J. Phys. (Paris) 39, C6–939 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Naturvetenskapliga ForskningsrÅdet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapp, Ö., Grindborg, J.E. & Rao, K.V. Low-temperature electrical resistance of disordered (Fe1−x Ni x )75P16B6Al3 alloys. J Low Temp Phys 35, 89–102 (1979). https://doi.org/10.1007/BF00121723

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121723

Keywords

Navigation