Skip to main content
Log in

The drag coefficient as determined by the dissipation method and its relation to intermittent convection in the surface layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The influence of intermittent convection on surface-layer stress estimates during the GARP Atlantic Tropical Experiment (GATE) is described. A negative correlation between the drag coefficient (C D) and the wind speed (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara% aaaa!36DE!\[\bar U\]) is found when short averaging periods are used. Well-defined, discrete events produce this negative correlation, and these events are shown to correspond to the passage of convective plumes. Constraints on averaging times necessary to obtain reasonable stress estimates using the bulk method are discussed.

Conditional sampling is used to produce average values of dissipation (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae% baaaa!37AB!\[\bar \varepsilon \]), wind speed (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara% aaaa!36DE!\[\bar U\]), and virtual temperature (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmivayaara% WaaSbaaSqaaiaaiw8aaeqaaaaa!385B!\[\bar T_\upsilon \]) for each high turbulent intensity event, and for the quiescent periods in between. Such statistics indicate that the highly turbulent states coincide with the presence of plumes and account for the negative correlation between C D and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara% aaaa!36DE!\[\bar U\]. Some of these statistics are also stability dependent.

The probability distributions of the dissipation rate are bimodally log-normal which suggests that turbulence generated at two different heights is being sampled. This, along with other results of this paper, support a picture of a boundary layer which is dominated by vertical exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bunker, A. F. and Worthington, L. V.: 1976, ‘Energy Exchange Charts of the North Atlantic Ocean’, Bull. Amer. Meteorol. Soc. 57, 670–678.

    Google Scholar 

  • Busch, N. E.: 1973, ‘On the Mechanics of Atmospheric Turbulence’, in Workshop on Micrometeorology (Ed., D. A. Haugen), Amer. Meteorol. Soc., Boston, Mass., pp. 1–65.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Davison, D. S.: 1974, ‘The Translation Velocity of Convective Plumes’, Quart. J. Roy. Meteorol. Soc. 100, 572–592.

    Google Scholar 

  • Deacon, E. L.: 1959, ‘The Measurement of Turbulent Transfer in the Lower Atmosphere’, Adv. Geophys. 6, 211–228.

    Google Scholar 

  • Deardorff, J. W.: 1968, ‘Dependence of Air-Sea Transfer Coefficients on Bulk Stability’, J. Geophys. Res. 73, 2549–2557.

    Google Scholar 

  • Denman, K. L. and Miyake, M.: 1973, ‘Behavior of the Mean Wind, the Drag Coefficient and the Wave Field in the Open Ocean’, J. Geophys. Res. 78, 1917–1931.

    Google Scholar 

  • Fichtl, G. H. and McVehil, G. E.: 1970, ‘Longitudinal and Lateral Spectra of Turbulence in the Atmospheric Boundary Layer at the Kennedy Space Center’, J. Atmos. Sci. 19, 51–63.

    Google Scholar 

  • Franceschini, G. A. and Cain, J. D.: 1971, ‘The Structure Function Approach to the Measurement of Wind Stress from a Moving Platform’, Proc. International Colloquium on the Exploitation of the Oceans, Bordeaux, France, Theme V, Tome II.

  • Frenzen, P.: 1973, ‘The Observed Relation between the Kolmogorov and von Karman Constants in the Surface Layer’, Boundary-Layer Meteorol. 3, 348–358.

    Google Scholar 

  • Frisch, A. S. and Businger, J. A.: 1973, ‘A Study of Convective Elements in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 3, 301–328.

    Google Scholar 

  • Garratt, J. R.: 1972, ‘Studies of Turbulence in the Surface Layer over Water (Lough Neagh) Part II: Production and Dissipation of Velocity and Temperature Fluctuations’, Quart. J. Roy. Meteorol. Soc. 98, 642–657.

    Google Scholar 

  • Garratt, J. R.: 1973, ‘A Note on a Paper by Frenzen (1973)’, Boundary-Layer Meteorol. 6, 519–521.

    Google Scholar 

  • Gibson, C. H., Stegen, G. R., and McConnel, S. O.: 1970, ‘Measurements of the Universal Constant in Kolmogorov's Third Hypothesis for High Reynolds Number Turbulence’, Phys. Fluids, 13, 2448–2451.

    Google Scholar 

  • Haugen, D. A. (ed.): 1973, Workshop on Micrometeorology, American Meteorological Society, Boston, Mass.

    Google Scholar 

  • Hoeber, H.: 1973, ‘The Boundary-Layer Sub-Programme for the GARP Atlantic Tropical Experiment’, ICSU/ WMO GATE Report, No. 5.

  • Jacobs, W. C.: 1942, ‘On the Energy Exchange between Sea and Atmosphere’, J. Marine Res. 5, 37–66.

    Google Scholar 

  • Kaimal, J. C. and Businger, J. A.: 1970, ‘Case Studies of a Convective Plume and a Dust Devil’, J. Appl. Meteorol. 9, 612–620.

    Google Scholar 

  • Kaimal, J. C. and Businger, J. A.: 1971, ‘Reply’ (to comments on “Case Studies...” by Lilly, D. H.), J. Appl. Meteorol. 10, 591–592.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surface Layer Turbulence’, Quart. J. Roy. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Kolmogorov, A. N.: 1962, ‘A Refinement of Previous Hypothesis Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number’, J. Fluid. Mech. 13, 82–85.

    Google Scholar 

  • Kovasznay, L. S. G., Kibens, V., and Blackwelder, R. F.: 1970, ‘Large-Scale Motion in the Intermittent Region of a Turbulent Boundary Layer’, J. Fluid Mech. 41, 283–285.

    Google Scholar 

  • Kuo, A. Y. S., and Corrsin, S.: 1971, ‘Experiments on Interval Intermittency and Fine-Structure Distribution Functions in a Fully Turbulent Fluid’, J. Fluid Mech. 50, 285–319.

    Google Scholar 

  • Laufer, J.: 1975, ‘New Trends in Experimental Turbulence Research’, Ann. Rev. Fluid Mech. 7, 307–326.

    Google Scholar 

  • Leavitt, E. D.: 1975, ‘Spectral Characteristics of Surface Layer Turbulence over the Tropical Ocean’, J. Phys. Oceanog. 5, 157–163.

    Google Scholar 

  • Lumley, J. L., and Panofsky, H. A.: 1964, The Structure of Atmospheric Turbulence, Interscience, N. Y.

    Google Scholar 

  • Lumley, J. L.: 1965, ‘Interpretation of Time Spectra Measured in High Intensity Shear Flows’, Phys. Fluids, 8, 1056–1062.

    Google Scholar 

  • McBean, G. A., Stewart, R. W., and Miyake, M.: 1971, ‘The Turbulent Energy Budget Near the Surface’, J. Geophys. Res. 76, 6540–6549.

    Google Scholar 

  • McBean, G. A., and Elliot, J. A.: 1975, ‘The Vertical Transports of Kinetic Energy by Turbulence and Pressure in the Boundary Layer’, J. Atmos. Sci. 32, 753–766.

    Google Scholar 

  • Mollo-Christensen, E.: 1973, ‘Intermittency in Large Scale Turbulent Flows’, Ann. Rev. Fluid Mech. 5, 101–118.

    Google Scholar 

  • Obukhov, A. M.: 1962, ‘Some Specific Features of Atmospheric Turbulence’, J. Fluid Mech. 13, 77–81.

    Google Scholar 

  • Pond, S., Phelps, G. T., Paquin, J. E., McBean, G. A., and Stewart, R. W.: 1971, ‘Measurements of the Turbulent Fluxes of Momentum, Moisture and Sensible Heat over the Ocean’, J. Atmos. Sci. 28, 901–917.

    Google Scholar 

  • Record, F. A., and Cramer, H. E.: 1966, ‘Turbulent Energy Dissipation Rates and Exchange Processes above a Non-Homogeneous Surface’, Quart. J. Roy. Meteorol. Soc. 92, 519–532.

    Google Scholar 

  • Sparrow, E. M., Husar, R. B., and Goldstein, R. J.: 1970, ‘Observations and Other Characteristics of Thermals’, J. Fluid Mech. 41, 793–800.

    Google Scholar 

  • Stewart, R. W., Wilson, J. R., and Burling, R. W.: 1970, ‘Some Statistical Properties of Small Scale Turbulence in an Atmospheric Boundary Layer’, J. Fluid Mech. 41, 141–152.

    Google Scholar 

  • Taylor, R. J.: 1960, ‘A New Approach to the Measurement of Turbulent Fluxes in the Lower Atmosphere’, J. Fluid Mech. 10, 449–458.

    Google Scholar 

  • Telford, J. W.: 1972, ‘A Plume Theory for the Convective Field in Clear Air’, J. Atmos. Sci. 29, 128–134.

    Google Scholar 

  • Tennekes, H.: 1973a, ‘Intermittency of the Small-Scale Structure of Atmospheric Turbulence’, Boundary-Layer Meteorol. 4, 241–250.

    Google Scholar 

  • Tennekes, H.: 1973b, ‘The Logarithmic Wind Profile’, J. Atmos. Sci. 30, 234–238.

    Google Scholar 

  • Townsend, A. A.: 1948, ‘Local Isotropy in the Turbulent Wake of a Cylinder’, Aust. J. Sci. Res. A1, 161–174.

    Google Scholar 

  • Ulanski, S. L., Hadlock, R. K., and Garstang, M.: 1974, ‘The Role of Convection in Surface Property and Velocity Fluctuations’, Boundary-Layer Meteorol. 6, 183–195.

    Google Scholar 

  • van Atta, C. W. and Chen, W. Y.: 1970, ‘Structure Functions of Turbulence in the Atmospheric Boundary Layer over the Ocean’, J. Fluid Mech. 44, 145–159.

    Google Scholar 

  • Wyngaard, J. C., and Coté, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution Number 409, Department of Atmospheric Sciences, University of Washington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalsa, S.J.S., Businger, J.A. The drag coefficient as determined by the dissipation method and its relation to intermittent convection in the surface layer. Boundary-Layer Meteorol 12, 273–297 (1977). https://doi.org/10.1007/BF00121467

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121467

Keywords

Navigation