Skip to main content
Log in

Denervated chicken breast muscle displays discoordinate regulation and differential patterns of expression of αf and β tropomyosin genes

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The expression of the α fast (αf) and β tropomyosin (TM) genes has been analysed with muscle-specific and common cDNA probes after unilateral nerve section of the pectoralis major muscle (PM) in 4-week-old chickens. The following were observed in denervated muscles. (1) The βTM mRNA, which was repressed during development, reaccumulates in a biphasic curve with the increase in the βTM protein lagging behind the changes in its mRNA. Accordingly, no βTM is seen in products translated in vitro from total and polyA+ RNA obtained 1 week after denervation. No such translation block is seen with RNA obtained from control or muscles denervated for 6 weeks. (2) No changes in the αfTM mRNA and corresponding protein are observed. (3) RNA processing of the two genes is not changed. (4) In the contralateral muscles, transitory increases in αf and βTM mRNAs are observed while the corresponding proteins remain unchanged. Our data suggest that muscle fibres display early and long-term responses to the loss of neural input which might result from a combination of changes produced by regenerative processes and reprogramming of existing fibres. Moreover, in contrast to normal development, no reciprocal changes of αf and βTM expression are seen in denervated muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausoni, S., Denardi, C., Moretti, P., Gorza, L. & Schiaffino, S. (1991) Developmental expression of rat cardiac troponin I mRNA. Development 112, 1041–51.

    Google Scholar 

  • Bandman, E., Matsuda, R. & Strohman, R. C. (1982) Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev. Biol. 93, 508–18.

    Google Scholar 

  • Bird, I. M., Dhoot, G. & Wilkinson, J. M. (1985) Identification of multiple variants of fast muscle troponin T in the chicken using monoclonal antibodies. Eur. J. Biochem. 150, 517–25.

    Google Scholar 

  • Bucher, E. A., De La, Brousse, C. F. & Emerson, C. P.JR. (1989) Developmental and muscle-specific regulation of avian fast skeletal troponin T isoform expression by mRNA splicing. J. Biol. Chem. 21, 12482–91.

    Google Scholar 

  • Buckingham, M. E. (1985) Actin and myosin multigene families: their expression during the formation of skeletal muscle. Essays Bioch. 20, 77–109.

    Google Scholar 

  • Butler-Browne, G. S., Bugaisky, L. B., Cuenoud, S., Schwartz, K. & Whalen, R. G. (1982) Denervation of newborn rat muscle does not block the appearance of adult fast myosin heavy chain. Nature 299, 830–3.

    Google Scholar 

  • Carraro, U., Morale, D., Musini, I., Lucke, S., Cantini, M., Betto, R., Catani, C., Della Libera, L., Danieli Betto, D. & Noventa, D. (1985) Chronic denervation of rat hemi diaphragm: maintenance of fibre heterogeneity with associated increasing uniformity of myosin isoforms. J. Cell Biol 100, 161–74.

    Google Scholar 

  • Cerny, L. C. & Bandman, E. (1987) Expression of myosin heavy chain isoforms in regenerating myotubes of innervated and denervated chicken pectoral muscle. Dev. Biol. 119, 350–62.

    Google Scholar 

  • Chomczynski, P. & Sacchi, N. (1982) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction Anal. Biochem. 162, 156–9.

    Google Scholar 

  • Cooper, T. A. & Ordahl, C. P. (1984) A single troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science 226, 976–82.

    Google Scholar 

  • Eftimie, R., Brenner, H. B. & Buonanno, A. (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl. Acad. Sci. USA 88, 1349–53.

    Google Scholar 

  • Feinberg, A. P. & Vogelstein, B. (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13.

    Google Scholar 

  • Gagnon, J., Kurowski, T. T., Wiesner, R. J. & Zak, R. (1991) Correlations between a nuclear and a mitochondrial mRNA of cytochrome c oxidase subunits, enzymatic activity and total mRNA content in rat tissues. Mol. Cell. Biochem. 107, 21–9.

    Google Scholar 

  • Garner, Y., Sassoon, D., Vandekerckhove, J., Alonso, S. & Buckingham, M. (1989) A developmental study of the abnormal expression of α=cardiac and α-skeletal actins in the striated muscle of a mutant mouse. Dev. Biol. 134, 236–45.

    Google Scholar 

  • Garrels, J. I. & Gibson, W. (1976) Identification and characterization of multiple forms of actin. Cell 9, 793–805.

    Google Scholar 

  • Hayward, L. J. & Schwartz, R. J. (1986) Sequential expression of chicken actin genes during myogenesis. J. Cell. Biol. 102, 1485–93.

    Google Scholar 

  • Imai, H., Hirai, S.-I., Hironi, H. & Hirabayashi, T. (1986) Many isoforms of fast muscle troponin T from chicken legs. J. Biochem. 99, 923–30.

    Google Scholar 

  • Klarsfeld, A. & Changeux, J.-P. (1985) Activity regulates the level of acetylcholine receptor α-subunit mRNA in cultured chicken myotubes. Proc. Natl. Acad. Sci. USA 82, 4558–62.

    Google Scholar 

  • Lebherz, H. G. (1984) Neuronal control of the synthesis of specific proteins in muscle fibres. TIBS 9, 351–4.

    Google Scholar 

  • Lemonnier, M., Balvay, L., Mouly, V., Libri, D. & Fiszman, M. Y. (1991) The chicken gene encoding the α isoform of tropomyosin of fast-twitch muscle fibers: organization, expression, and identification of the major proteins synthesized. Gene 107, 229–40.

    Google Scholar 

  • Libri, D., Lemonnier, M., Meinnel, T. & Fiszman, M. (1989) A single gene codes for the β subunits of smooth and skeletal muscle tropomyosin in the chicken. J. Biol. Chem. 264, 2935–44.

    Google Scholar 

  • Libri, D., Mouly, V., Lemonnier, M. & Fiszman, M. (1990) A nonmuscle tropomyosin is encoded by the smooth/skeletal β-tropomyosin gene and its RNA is transcribed from an internal promoter. J. Biol. Chem. 265, 3471–3.

    Google Scholar 

  • Long, C. S. & Ordahl, C. P. (1988) Transcriptional repression of an embryo-specific muscle gene. Dev. Biol. 127, 228–34.

    Google Scholar 

  • Mcgeachie, J. (1985) The fate of proliferating cells in skeletal muscle after denervation or tenotomy: an autoradiographic study. Neuroscience 15, 499–506.

    Google Scholar 

  • Matsuda, R., Obinata, T. & Shimada, Y. (1981) Types of troponin components during development of chicken muscle. Dev. Biol. 82, 11–19.

    Google Scholar 

  • Matsuda, R., Bandman, E. & Strohman, R. C. (1983) Regional differences in the expression of myosin light chains and tropomyosin subunits during development of chicken breast muscle. Dev. Biol. 95, 484–91.

    Google Scholar 

  • Matsuda, R., Spector, D. & Strohman, R. C. (1984) Denervated skeletal muscle displays discoordinate regulation for the synthesis of several myofibrilar proteins. Proc. Natl. Acad. Sci. USA 81, 1122–5.

    Google Scholar 

  • Meinnel, T., Mouly, V., Gros, D., Fiszman, M. Y. & Lemonnier, M. (1989) Tissue-specific transcriptional control of α and β tropomyosins in chicken muscle development. Dev. Biol. 131, 430–8.

    Google Scholar 

  • Minty, A. J., Alonso, S., Guenet, J.-L. & Buckingham, M. E. (1982) A fetal skeletal muscle actin mRNA in the mouse and its identity with cardiac actin mRNA. Cell 30, 185–92.

    Google Scholar 

  • Montarras, D. & Fiszman, M. Y. (1983) A new phenotype is expressed by subcultured quail myoblasts isolated from future fast and slow muscles. J. Biol. Chem. 258, 3883–8.

    Google Scholar 

  • Montarras, D., Fiszman, M. Y. & Gros, F. (1981) Characterization of the tropomyosins present in various chick embryo muscle types and muscle cells differentiated in vitro. J. Biol. Chem. 256, 4081–6.

    Google Scholar 

  • Obinata, T., Saitoh, O. & Takano-Ohmuro, H. (1984) Effect of denervation on the isoform transitions of tropomyosin, troponin T and myosin isozyme in chicken breast muscle. J. Biochem. 95, 585–8.

    Google Scholar 

  • O'farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 230, 4007–21.

    Google Scholar 

  • Ontell, M. (1975) Evidence for myoblastic potential of satellite cells in denervated muscle. Cell Tissue Res. 160, 345–53.

    Google Scholar 

  • Ordahl, C. P. (1986) The skeletal and cardiac α-actin genes are coexpressed in early embryonic striated muscle. Dev. Biol. 117, 488–92.

    Google Scholar 

  • Paterson, B. M. & Elridge, J. D. (1984) α-Cardiac actin is the major sarcomeric isoform expressed in the embryonic avian skeletal muscle. Science 224, 1436–8.

    Google Scholar 

  • Piette, J., Huchet, M., Duclert, A., Fujisawa-Sehara, A. & Changeux, J.-P. (1992) Localization of mRNAs coding for CMD1, myogenin, and the P-subunit of the acetylcholine receptor during skeletal muscle development in the chicken. MOD 37, 95–106.

    Google Scholar 

  • Reichman, H., Srihari, T. & Pette, P. (1983) Ipsi-and contralateral fibre transformations by cross-reinnervation. A principle of symmetry. Pflügers Arch. 397, 202–8.

    Google Scholar 

  • Roy, R. K., Sreter, F. A. & Sarkar, S. (1979) Changes in tropomyosin subunits and myosin light chains during development of chicken and rabbit striated muscles. Dev. Biol. 69, 15–30.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989) Molecular Cloning, a Laboratory Manual. 2nd edn, New York, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schiaffino, S., Gorza, L., Pitton, G., Saggin, L., Ausoni, S., Sartore, S. & Lomo, T. (1988) Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Dev. Biol. 127, 1–11.

    Google Scholar 

  • Shieh, B. H., Ballivet, M. & Schmidt, J. (1987) Quantification of an alpha subunit splicing intermediate: evidence for transcriptional activation in the control of acetylcholine receptor expression in denervated chick muscle. J. Cell Biol. 104, 1337–41.

    Google Scholar 

  • Shimizu, N. & Shimada, Y. (1985) Immunochemical analysis of troponin-T isoforms in adult, embryonic, regenerating, and denervated chicken fast skeletal muscle. Dev. Biol. 111, 324–34.

    Google Scholar 

  • Shimizu, N., Kamel-Reid, S. & Zak, R. (1988) Expression of actin mRNAs in denervated chicken skeletal muscle. Dev. Biol. 128, 435–40.

    Google Scholar 

  • Staron, R. S. & Pette, D. (1987) Nonuniform myosin expression along single fibres of chronically stimulated and contralateral rabbit tibialis anterior muscles. Pflügers Arch. 409, 67–73.

    Google Scholar 

  • Toutant, M., Toutant, J.-P., Montarras, D. & Fiszman, M. Y. (1983) Potential phasic and tonic muscles express a commen set of fast and slow myosin light chains and fast tropomyosin during early development of chick embryo. Biochimie 65, 637–42.

    Google Scholar 

  • Tsay, H.-J. & Schmidt, J. (1989) Skeletal muscle denervation activates acetyl choline receptor genes. J. Cell Biol. 108, 1523–6.

    Google Scholar 

  • Wade, R., Sutherland, C., Gahlmann, R., Kedes, L., Hardeman, E. & Gunning, P. (1990) Regulation of contractile protein gene family mRNA pool sizes during myogenesis. Dev. Biol. 142, 270–82.

    Google Scholar 

  • Whalen, R. (1985) Myosin isoenzymes as molecular markers for muscle physiology. J. Exp. Physiol. 115, 43–53.

    Google Scholar 

  • Whalen, R. G., Sell, S. M., Butler-Browne, G. S., Schwartz, K., Bouveret, P. & Pinset-Harström, I. (1981) Three myosin heavy chain isozymes appear sequentially in developing rat muscle. Nature 292, 805–9.

    Google Scholar 

  • Wieczorek, D. F. (1988) Regulation of alternatively spliced α-tropomyosin gene expression by nerve extracts. J. Biol. Chem. 263, 10456–63.

    Google Scholar 

  • Wilkinson, J. M., Moir, A. J. G. & Waterfield, M. D. (1984) The expression of multiple isoforms of troponin-T in chickenfast-skeletal muscle may result from differential splicing of a single gene. Eur. J. Biochem. 143, 47–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M.P., Wiesner, R.J., Mouly, V. et al. Denervated chicken breast muscle displays discoordinate regulation and differential patterns of expression of αf and β tropomyosin genes. J Muscle Res Cell Motil 14, 377–384 (1993). https://doi.org/10.1007/BF00121288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121288

Keywords

Navigation