Skip to main content
Log in

Similarity parameters from first-order closure and data

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A two-layer, first-order closure model for the Planetary Boundary Layer (PBL) is developed with the objective of parameterizing the surface stress with respect to the synoptic scale. The model includes stability effects by considering stratification-dependent secondary flow in the outer layer and empirical corrections to the surface layer flow. It shows the compatibility of simple eddy viscosity closure solutions with similarity theory by producing the now well-known Rossby similarity equations. It allows further insight into the Rossby similarity parameters by relating them to a single similarity parameter which is the ratio of the characteristic scales of the PBL and the surface layer.

The measured and derived values of the similarity parameters A and B are compared with AIDJEX data and other published values. The variation in these values in stably stratified conditions is predicted and two alternate similarity parameters are calculated, one a constant and the other with a small variation and decreasing influence on the drag coefficient in stable stratification. The result is an empirical resistance law for a geostrophic drag coefficient variation which parameterizes an observed order-of-magnitude change in surface stress with changes in roughness or PBL stratification. This variation is related to similarity parameters characteristic of the region and to measurable changes in the geostrophic departure angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arya, S. P. S.: 1975, ‘Geostrophic Drag and Heat Transfer Relation for the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 101, 147–161.

    Article  Google Scholar 

  • Babileva, I. M., Zilitinkevich, S. S., and Laiktman, D. L.: 1967, ‘The Turbulent Regime in a Thermally Stratified PBL’, (in Russian), Trudy mejdunarodnovo kolloquiuma, pp. 179–190.

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere’, J. Geophys. Res. 67, 3059–3102.

    Article  Google Scholar 

  • Blackadar, A. K. and Tennekes, H.: 1967, ‘Asymptotic Similarity in Neutral Barotropic PBL’, J. Atmos. Sci. 25, pp. 1015–1022.

    Article  Google Scholar 

  • Blinova, A. N. and Kibel, I. A.: 1937, Insbornik: Dinamicheskaya Meteorologiya, Pt. 2, pp. 28–36.

  • Brown, R. A.: 1972, ‘The Inflection Point Instability Problem for Stratified Rotating Boundary Layers’, J. Atmos. Sci. 29, 850–859.

    Article  Google Scholar 

  • Brown, R. A.: 1974a, ‘Matching Classical Boundary Layer Solution Toward a Geostrophic Drag Coefficient Relation’, Boundary-Layer Meteorol. 7, 489–500.

    Article  Google Scholar 

  • Brown, R. A.: 1974b, Analytical Methods in Planetary-Layer Modelling, Adam Hilger Ltd., London, 148 pp.

    Google Scholar 

  • Businger, J. and Arya, S. P. S.: 1974, ‘The Height of the Mixed Layer in the Stably Stratified PBL’, Advances in Geophysics, 18a, Academic Press, New York, pp. 73–92.

    Google Scholar 

  • Businger, J., Wyngaard, J. C., Izumi, Y., and Bradley, E.: 1971, ‘Flux Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 1021–1025.

    Article  Google Scholar 

  • Clarke, R. H.: 1970, ‘Observational Studies in the Atmospheric Boundary Layer’, Quart. J. Roy. Met. Soc. 96, 91–114.

    Article  Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1973, ‘On the Appropriate Scaling for Velocity and Temperature in the PBL’, J. Atmos. Sci. 30, 1346–1353.

    Article  Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby Number Similarity Theory’, Boundary-Layer Meteorol. 7, 267–287.

    Article  Google Scholar 

  • Clarke, R. H., Dyer, A. J., Bristok, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment, Boundary Layer Data’, CSIRO, Division of Meteorological Physics, Tech. Paper 19.

  • Csanady, G. T.: 1967, ‘On the Resistance Law of a Turbulent Ekman Layer’, J. Atmos. Sci. 24, 467–471.

    Article  Google Scholar 

  • Deacon, E. L.: 1974, ‘Geostrophic Drag Coefficients’, Boundary-Layer Meteorol. 5, 321–340.

    Article  Google Scholar 

  • Deardorff, J. W.: 1970, ‘A Three-Dimensional Numerical Investigation of the Idealized PBL’, Geophys. Fluid Dynamics I, pp377–410.

  • Etling, D.: 1971, ‘The Stability of an Ekman Boundary Layer Flow as Influenced by Thermal Stratification’, Beitr. Phys. Atmos. 44, 168–186.

    Google Scholar 

  • Gill, gnA. E.: 1967, ‘The Turbulent Ekman Layer’, Department of Applied Mathematics and Theoretical Physics, University of Cambridge report.

  • Hasse, L.: 1976, ‘A Resistance Law Hypothesis for the Non-Stationary Advective PBL’, Boundary-Layer Meteorol. 10, 393–407.

    Article  Google Scholar 

  • Kaylor, R. and Faller, A.: 1972, ‘Instability of the Stratified Ekman Boundary Layer and the Generation of Internal Waves’, J. Atmos. Sci. 29, 497–509.

    Article  Google Scholar 

  • Kazanski, A. B. and Monin, A. S.: 1960, ‘A Turbulent Regime Above the Ground Atmospheric Layer’, Izv. Akad. Sci. USSR, Geophys. Ser. 1, 110–112.

    Google Scholar 

  • Lettau, H. H.: 1962, ‘Theoretical Wind Spirals in the Boundary Layer of a Barotropic Atmosphere’, Beitr. Phys. Atmos. 35, 3.

    Google Scholar 

  • LeMone, M.: 1973, ‘The Structure and Dynamics of Horizontal Roll Vortices in the Planetary Boundary Layer’, J. Atmos. Sci. 30, 1077–1091.

    Article  Google Scholar 

  • Lilly, D. K.: 1966, ‘On the Stability of Ekman Boundary Flow’, J. Atmos. Sci. 23, 481–494.

    Article  Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1974, ‘Stability Function for the Boundary Layer Resistance Laws Based Upon Observed Boundary Layer Heights’, J. Atmos. Sci. 31, 1324–1333.

    Article  Google Scholar 

  • Monin, A. S.: 1950, ‘Dynamical Turbulence in the Atmosphere’, Bull. (Izv.) Akad. Sci. U.S.S.R., Geogr. Geophys. Ser. 14, 3.

    Google Scholar 

  • Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed, and Temperature Profiles in the Unstable Atmospheric Surface Layer’, J. Applied Math., 9, 857–861.

    Google Scholar 

  • Rossby, C. G.: 1932, ‘A Generalization of the Theory of the Mixing, Length with Applications to Atmospheric and Oceanic Turbulence’, Mass. Inst. Tech. Met. Papers I, pp. 4–36.

  • Rossby, C. G. and Montgomery, R. B.: 1935, ‘The Layers of Functional Influence in Wind and Ocean Currents’, MIT Papers 3, 3–101.

    Google Scholar 

  • Thompson, R. O.: 1973, ‘Stratified Ekman Boundary Layer Models’, Geophys. Fluid Dynamics 5, 201–210.

    Article  Google Scholar 

  • Van Dyke, M.: 1964, ‘Perturbation Methods in Fluid Mechanics’, Applied Math. and Mech. Serv., Vol. 8, Academic Press Inc., New York.

    Google Scholar 

  • Zilitinkevich, S. S. and Chalikov, D. V.: 1968, ‘The Laws of Resistance of Heat and Moisture Exchange in the Interaction Between the Atmosphere and the Underlying Surface’, Izv. Akad. Navksssr; Fiz. Atmos. Okeana 4, 765–772.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Resistance Laws and Prediction Equations for the Depth of the PBL’, J. Atmos. Sci. 32, 741–752.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, R.A. Similarity parameters from first-order closure and data. Boundary-Layer Meteorol 14, 381–396 (1978). https://doi.org/10.1007/BF00121047

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121047

Keywords

Navigation