Skip to main content
Log in

Estimates of integral time scales from a 100-M meteorological tower at a plains site

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Four distinct types of autocorrelograms were observed using high-frequency vertical velocity data measured at 100 m above a flat terrain. Several types of nonstationary atmospheric motions due to low frequency fluctuations were examined. Under nighttime stable conditions, these phenomena were found to lead to abnormally slow exponential decay of the autocorrelation function. Several different techniques for estimating Eulerian integral time scales were compared in order to select an appropriate method of estimation. When grouped by stability classes, the Eulerian integral time scales decrease slightly with increasing stability, but generally exhibit no significant correlation with other meteorological parameters. Using a postulated relation, estimates of the Lagrangian to Eulerian integral time scale ratio range from 3 to 5 under unstable conditions and 15 to 25 under stable conditions. Under unstable conditions the average Lagrangian integral time scale is on the order of 40 s and exhibits no significant correlation with several pertinent meteorological parameters. Under stable conditions, the Lagrangian integral time scale correlates well with the Monin-Obukhov length and temperature lapse rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angell, J. K., Pack, D., and Hoecker, H.: 1971, ‘Lagrangian-Eulerian Time Scale Ratios Estimated from Constant Volume Balloon Flights Past a Tall Tower’, Quart. J. Roy. Meteorol. Soc. 90, 57–71.

    Google Scholar 

  • Bendat, J. S. and Piersol, A. G.: 1971, Random Data: Analysis and Measurement Procedures, Wily-Interscience, New York, New York, 407 pp.

    Google Scholar 

  • Caughey, S. J.: 1982, ‘Observed Characteristics of the Atmospheric Boundary Layer’, in F. T. M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publ. Co., Dordrecht, Holland, 107–158.

    Google Scholar 

  • Caughey, S. J. and Readings, C. J.: 1975, ‘An Observation of Waves and Turbulence in the Earth's Boundary Layer’, Bound.-Layer Meteor. 9, 279–296.

    Google Scholar 

  • Cher, M., Joncich, A., McDade, C., Schwall, R., and Waldron, T.: 1983, Plume Model Validation Field Measurements — Flat Terrain Side, Kincaid, Illinois, Rockwell International, Newbury Park, California.

    Google Scholar 

  • Corrsin, S.: 1963, ‘Estimation of the Relation between Eulerian and Lagrangian Scales in large Reynold's Number Turbulence’, J. Atmos. Sci. 20, 115–118.

    Google Scholar 

  • Csanady, G. T.: 1973, Turbulent Diffusion in the Environment, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Draxler, R. R.: 1976, ‘Determination of Atmospheric Diffusion Parameters’, Atmos. Environ. 10, 99–105.

    Google Scholar 

  • Gifford, F. A.: 1955, ‘A Simultaneous Lagrangian-Eulerian Turbulence Experiment’, Monthly Weather Rev. 83, 293–301.

    Google Scholar 

  • Hanna, S. R.: 1981, ‘Lagrangian and Eulerian Time-Scale Relations in the Daytime Boundary Layer’, J. Appl. Meteorol. 20, 242–249.

    Google Scholar 

  • Hanna, S. R.: 1983, ‘Lateral Turbulence Intensity and Plume Meandering During Stable Conditions’, J. of Climate and Appl. Meteorol. 22, 1424–1430.

    Google Scholar 

  • Hay, J. S. and Pasquill, F.: 1959, ‘Diffusion from a Continuous Source in Relation to the Spectrum and Scale of Turbulence’, Adv. Geophys. 6, 345.

    Google Scholar 

  • Hilst, G. R.: 1957, ‘Observations of the Diffusion and Transport of Stack Effluents in Stable Atmospheres’, Ph.D. Dissertation, University of Chicago.

  • Hudischewskyj, A. B. and Reynolds, S. D.: 1983, ‘A Catalogy of Data for the EPRI Plume Model Validation and Development Data Base-Plains Site’, EPRI Report EA-3080, Systems Applications, Inc., San Rafael, California.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R.: 1972, ‘Spectral Characteristics of Surface Layer Turbulence’, Quart. J. R. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Cote, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Leyi, Z. and Panofsky, H. A.: 1983, ‘Wind Fluctuation in Stable Air at the Boulder Tower’, Boundary-Layer Meteorol. 25, 354–361.

    Google Scholar 

  • Liu, M. K. and Moore, G. E.: 1984, ‘Diagnostic Validation of Plume Models at a Plains Site’, EA-3077, Electric Power Research Institute, Palo Alto, California.

    Google Scholar 

  • Mickelsen, W. R.: 1955, ‘An Experimental Comparison of Lagrangian and Eulerian Correlation Coefficients in Homogeneous Isotropic Turbulence’, N.A.C.A. Tech. Note No. 3570, Washington, D.C.

  • Misra, P. K.: 1978, ‘The Auto-correlation Function of the Vertical Velocity in the Low-Frequency Range’, Fourth Symposium on Turbulence, Diffusion, and Air Pollution, American Meteorol. Soc., Reno, Nevada, pp. 41–45.

    Google Scholar 

  • Panofsky, H. A. and Deland, R. J.: 1959, ‘One-Dimensional Spectra of Atmospheric Turbulence in the Lowest 100 m, Atmospheric Diffusion and Air Pollution’, Adv. Geophys. 6, 41–61.

    Google Scholar 

  • Pasquill, F.: 1971, ‘Atmospheric Dispersion of Pollution’, Quart. J. Roy. Meteorol. Soc. 97, 369–395.

    Google Scholar 

  • Panofsky, H. A. and Deland, R. J.: 1959, ‘One-Dimensional Spectral of Atmospheric Turbulence in the Lowest 100 m, Atmospheric Diffusion and Air Pollution’, Adv. Geophys. 6, 41–61.

    Google Scholar 

  • Pasquill, F.: 1971, ‘Atmospheric dispersion of Pollution’, Quart. J. Roy. Meteorol. Soc. 97, 369–395.

    Google Scholar 

  • Pasquill, F. and Smith, F. B.: 1983, Atmospheric Diffusion, 3rd ed., Halsted Press, New York, New York, 435 pp.

    Google Scholar 

  • Phillips, P. and Panofsky, H. A.: 1982, ‘A Re-examination of Lateral Dispersion from Continuous Sources’, Atmos. Environ. 16, 1851–1860.

    Google Scholar 

  • Smith, F., Decker, C. F., Strong, R. B., White, J. H., Arey, F. K., and Bach, W. D.: 1983, Estimates of Uncertainty for the PMV Project Field Measurements — Plains Site, Research Triangle Institute, Research Triangle Park, North Carolina.

    Google Scholar 

  • Taylor, G. I.: 1921, ‘Diffusion by Continuous Movements’, Proc. London Math. Soc., Ser. 2, 20, 196–202.

    Google Scholar 

  • Turner, D. B.: 1967, Workbook of Atmospheric Dispersion Estimates, Public Health Service, Publication 999-AP-26, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio.

    Google Scholar 

  • Wamser, C. and H. Muller: 1977, ‘On the Spectral Scale of Wind Fluctuations within and above the Surface Layer’, Quart. J. Roy. Meteorol. Soc. 103, 721–730.

    Google Scholar 

  • Webb, E. K.: 1955, Autocorrelations and Energy Spectra of Atmospheric Turbulence, Tech. Paper No. 5, C.S.I.R.O., Div. Met. Phys., Melbourne, Australia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work conducted while a visiting scholar at Systems Applications, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, G.E., Liu, MK. & Shi, LH. Estimates of integral time scales from a 100-M meteorological tower at a plains site. Boundary-Layer Meteorol 31, 349–368 (1985). https://doi.org/10.1007/BF00120835

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120835

Keywords

Navigation