Skip to main content
Log in

Laboratory studies on dry deposition of submicron-size particles on coniferous foliage

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The deposition of 0.03 Μm particles to an assembly of 10 spruce shoots and a synthetic juniper shoot was studied by electrochemical transfer under conditions of Re and Sc similarity at flow velocities corresponding to wind speeds of 0.1 to 3 m s−1.

The concept of representing transfer to needle-type foliage by that to cylinders in crossflow, with adjustment factors for angle of incidence and for mutual interference of cylinders (needles), however imprecise, appears to be sufficient to interpret the results. The transfer data follow approximately a Re1/2 relationship with respect to flow velocity and the mass transfer coefficient calculated for cylinders in crossflow with a ‘shelter factor’ of the order of 2, to account for reduction in transfer due to mutual interference of needles, can be expected to be a reasonable first approximation of the deposition velocity.

Applications of the results to forest stands show very little absorption by stands of limited extension; distances of the order of kilometers would be required to reduce airborne concentrations to 1/e of their initial value for aerosol with negligible sedimentation and inertial impaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bach, W.: 1972, ‘Atmospheric Pollution’, McGraw Hill, New York, 144 pp.

    Google Scholar 

  • Belot, Y.: 1976, ‘Etude de la captation des pollutants atmospheriques par les vegetaux’, Centre a l'énergie atomique (CEN), Fontenay aux Roses, France, 102 pp.

    Google Scholar 

  • Brutsaert, W.: 1979, ‘Heat and Mass Transfer to and from Surfaces with Dense Vegetation or Similar Permeable Roughness’, Boundary-Layer Meteorol. 16, 365–388.

    Google Scholar 

  • Campbell, G. S., McArthur, A. J., and Monteith, J. L.: 1980, ‘Windspeed Dependence of Heat and Mass Transfer through Coats and Clothing’, Boundary-Layer Meteorol. 18, 485–493.

    Google Scholar 

  • Chamberlain, A. C.: 1967, ‘Transport of Lycopodium Spores and other small Particles to Rough Surfaces’, Proc. R. Soc. Lond., A, 296, 45–70.

    Google Scholar 

  • Chamberlain, A. C.: 1974, ‘Mass Transfer to Bean Leaves’, Boundary-Layer Meteorol., 6, 477–486.

    Google Scholar 

  • Chamberlain, A. C.: 1975, ‘The Movement of Particles in Plant Communities’ in J. L. Monteith (ed.), ‘Vegetation and the Atmosphere’, Vol. I., Academic Press, New York, 273 pp.

    Google Scholar 

  • Fuchs, N. A.: 1964, ‘The Mechanics of Aerosols’, (transl. from Russian), Pergamon Press, Oxford, 408 pp.

    Google Scholar 

  • Galloway, J. N. and Whelpdale, D. M.: 1980, ‘An Atmospheric Sulphur Budget for Eastern North America’, Atmos. Environ. 14, 409–417.

    Google Scholar 

  • Gates, D. M., Tibbals, E. C., and Kreith, F.: 1965, ‘Radiation and Convection in Ponderosa Pine’, Am. J. Bot. 52, 66–71.

    Google Scholar 

  • Grace, J. and Wilson, J.: 1976, ‘The Boundary Layer over a Populus Leaf’, J. Experim. Bot. 27, 231–241.

    Google Scholar 

  • Heichel, G. H. and Hankin, L.: 1976, ‘Roadside Coniferous Windbreaks as Sinks for Vehicular Emission’, J. Air Poll. Control Assoc. 26, 767–770.

    Google Scholar 

  • Incropera, F. P. and DeWitt, D. P.: 1981, ‘Fundamentals of Heat Transfer’, John Wiley, New York, 819 pp.

    Google Scholar 

  • Jarvis, P. J., James, G. B., and Landsberg, J. J.: 1975, ‘Coniferous Forest’ (Case study), in J. L. Monteith (ed.), ‘Vegetation and the Atmosphere’, Vol. II, Academic Press, New York, 439 pp.

    Google Scholar 

  • Landsberg, J. J. and Ludlow, M. M.: 1970, ‘A Technique for determining Resistance to Mass Transfer through the Boundary-Layer of Plants with Complex Structures’, J. appl. Ecol. 7, 187–192.

    Google Scholar 

  • Landsberg, J. J. and Thom, A. S.: 1971, ‘Aerodynamic Properties of a Plant of Complex Structure’, Quart. J. Roy. Meteorol. Soc. 97, 565–570.

    Google Scholar 

  • Little, P.: 1977, ‘Deposition of 2.75, 5.0 and 8.5 Μm Particles to Plant and Soil Surfaces’, Environ. Poll. 12, 293–305.

    Google Scholar 

  • Little, P. and Wiffen, R. D.: 1977, ‘Emission and Deposition of Petrol Engine Exhaust Pb-I. Deposition of Exhaust Pb to Plant and Soil Surfaces’, Atmos. Environ. 11, 437–447.

    Google Scholar 

  • Little, P. and Wiffen, R. D.: 1978, ‘Emission and Deposition of Lead from Motor Exhausts — II. Airborne Concentration: Particle Size and Deposition of Lead near Motorways’, Atmos. Environ. 12, 1331–1341.

    Google Scholar 

  • Miller, D. F., Levy, A., Pui, D. Y. H., Whitby, K. T., and Wilson, W. E.: 1976, ‘Combustion and Photochemical Aerosols attributable to Automobiles’, J. Air Poll. Control Assoc. 26, 576–581.

    Google Scholar 

  • Quraishi, M. S. and Fahidy, T. Z.: 1980, ‘A Study of Convective Flow Patterns via Electrochemical Means’, Americ. Soc. Mech. Eng. (ASME) report 80-HT-93, 7 pp.

  • Raynor, G. S., Hayes, J. V., and Ogden, E. C.: 1974, ‘Particulate Dispersion Into and Within a Forest’, Boundary-Layer Meteorol. 7, 429–456.

    Google Scholar 

  • Roth, R.: 1975, ‘Der vertikale Transport von Luftbeimengungen in der Prandtl Schicht und die Deposition-Velocity’, Meteorol. Rundschau 28, 65–71.

    Google Scholar 

  • Schuepp, P. H.: 1972, ‘Studies of Forced Convection Heat and Mass Transfer of Realistic Fluttering Leaf Models’, Boundary-Layer Meteorol. 2, 263–274.

    Google Scholar 

  • Schuepp, P. H.: 1973, ‘Model Experiments of Free Convection Heat and Mass Transfer of Leaves and Plant Elements’, Boundary-Layer Meteorol. 3, 454–467.

    Google Scholar 

  • Schuepp, P. H.: 1980, ‘Heat and Moisture Transfer from Flat Surfaces in Intermittent Flow: a Laboratory Study’, Agric. Meteorol. 22, 351–366.

    Google Scholar 

  • Schuepp P. H.: 1981, ‘Electrochemical Simulation of Heat and Mass Transfer in Agrometeorology’, Can. J. Chem. Eng. 59, 164–172.

    Google Scholar 

  • Schuepp, P. H. and White, K. D.: 1975, ‘Transfer Processes in Vegetation by Electrochemical Analog’, Boundary-Layer Meteorol. 8, 335–358.

    Google Scholar 

  • Sehmel, G. A.: 1980, ‘Particle and Gas Deposition: a Review’, Atmos. Environm. 14, 983–1011.

    Google Scholar 

  • Smith, W. H.: 1981, Air Pollution and Forests, Springer Verlag, New York, 379 pp.

    Google Scholar 

  • Stewart, J. B. and Thom, A. S.: 1973, ‘Energy Budget in a Pine Forest’, Quart. J. Roy. Meteorol. Soc. 99, 154–170.

    Google Scholar 

  • Thom, A. S.: 1971, ‘Momentum Absorption by Vegetation’, Quart. J. Roy. Meteorol. Soc. 97, 414–428.

    Google Scholar 

  • Tibbals, E. C., Carr, E. K., Gates, D. M., and Kreith, F.: 1964, ‘Radiation and Convection in Conifers’, Am. J. Bot. 51, 529–538.

    Google Scholar 

  • Whitby, K. T., Clarke, W. E., Marple, V. A., Sverdrup, G. M., Sem, G. J., Willeke, K., Lin, B. Y., and Pui, D. Y. H.: 1975, ‘Characterization of California Aerosols — I. Size distribution of Freeway Aerosol’, Atmos. Environ. 9, 463–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuepp, P.H. Laboratory studies on dry deposition of submicron-size particles on coniferous foliage. Boundary-Layer Meteorol 24, 465–480 (1982). https://doi.org/10.1007/BF00120734

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120734

Keywords

Navigation