Skip to main content
Log in

Bifurcation scenarios of the noisy duffing-van der pol oscillator

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a numerical study of the bifurcation behavior of the noisy Duffing-van der Pol oscillator

% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttLeary% qr1ngBPrgaiuGacuWF4baEgaWaaiaaiccacqWF9aqpcaaIGaGaaiik% aerbtLhBMfwzUbacgiGaa4xSdiaaiccacqGHRaWkcaaIGaGaeq4Wdm% 3ccaaIXaGcceqGxbGbaiaaliaaigdakiGacMcacqWF4baEcaaIGaGa% ci4kaiaaiccacqaHYoGycuWF4baEgaGaaiaaiccacqGHsislcaaIGa% Gae8hEaG3aaWbaaSqabeaacaaIZaaaaOGaaGiiaiabgkHiTiaaicca% cqWF4baEdaahaaWcbeqaaiaaikdaaaGccuWF4baEgaGaaiaaiccaci% GGRaGaaGiiaiabeo8aZTGaaGOmaOGabe4vayaacaGaaeOmaiaabYca% aaa!5F62!\[\ddot x = (\alpha + \sigma 1{\rm{\dot W}}1)x + \beta \dot x - x^3 - x^2 \dot x + \sigma 2{\rm{\dot W2,}}\]

where α, β are bifurcation parameters, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaaceqGxbGbaiaali% aaigdakiqabEfagaGaaSGaciOmaaaa!35B4!\[{\rm{\dot W}}1{\rm{\dot W}}2\] are independent white noise processes, and σ1, σ2 are intensity parameters. A stochastic bifurcation here means (a) the qualitative change of stationary measures or (b) the change of stability of invariant measures and the occurrence of new invariant measures for the random dynamical system generated by (1). The first type of bifurcation can be observed when studying the solution of the Fokker-Planck equation, this stationary measure is a quantity corresponding to the one-point motion. More generally, if one is interested in the simultaneous motion of n points (n≥1) forward and backward in time, then the second type of bifurcation arises naturally, capturing all the stochastic dynamics of (1). Based on the numerical results, we propose definitions of the stochastic pitchfork and Hopf bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, L., Random Dynamical Systems, Preliminary version 2, November 1994.

  2. Arnold, L., ‘Six lectures on random dynamical systems (CIME Summer School)’, in Lecture Notes in Mathematics, Vol. 1609, Springer-Verlag, Berlin, 1995, pp. 1–43.

    Google Scholar 

  3. Arnold, L. and Boxler, P., ‘Stochastic bifurcation: Instructive examples in dimension one’, in Progress in Probability, Vol. 27, M., Pinsky and V., Wihstutz (eds.), Birkhäuser, Boston, 1992, pp. 241–256.

    Google Scholar 

  4. Arnold, L. and Crauel, H., ‘Random dynamical systems’, in Lecture Notes in Mathematics, Vol. 1486, Springer-Verlag, Berlin, 1991, pp. 1–22.

    Google Scholar 

  5. Arnold, L. and Scheutzow, M., ‘Perfect cocycles through stochastic differential equations’, Probability Theory and Related Fields 101, 1995, 65–88.

    Google Scholar 

  6. Arnold, L. and Schmalfuβ, B., ‘Fixed points and attractors for random dynamical systems’, in Proceedings of the IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, Trondheim, Norway, July 3–7, 1995 (to appear).

  7. Arnold, L., Sri Namachchivaya, N., and Schenk-Hoppé, K. R., ‘Toward an understanding of stochastic Hopf bifurcation: A case study’, International Journal of Bifurcation and Chaos, 1996 (to appear).

  8. Arnold, L. and Xu, Kedal, ‘Invariant measures for random dynamical systems, and a necessary condition for stochastic bifurcation from a fixed point’, Random & Computational Dynamics 2, 1994, 165–182.

    Google Scholar 

  9. Baxendale, P. H., ‘A stochastic Hopf bifurcation’, Probability Theory and Related Fields 99, 1994, 581–616.

    Google Scholar 

  10. Baxendale, P. H., ‘Asymptotic behaviour of stochastic flows of diffeomorphisms’, in Lecture Notes in Mathematics, Vol. 1203, Springer-Verlag, Berlin, 1986, pp. 1–19.

    Google Scholar 

  11. Baxendale, P. H., ‘Stability and equilibrium properties of stochastic flows of diffeomorphisms’, in Progress in Probability, Vol. 27, M., Pinsky and V., Wihstutz (eds.), Birkhäuser, Boston, 1992, pp. 3–35.

    Google Scholar 

  12. Colonius, F. and Kliemann, W., ‘Random perturbations of bifurcation diagrams’, Nonlinear Dynamics 5, 1994, 353–373.

    Google Scholar 

  13. Crauel, H., ‘Extremal exponents of random dynamical systems do not vanish’, Dynamics and Differential Equations 2, 1990, 245–291.

    Google Scholar 

  14. Crauel, H., ‘Invariant measures are supported by random attractors’, Preprint, 1995 (submitted).

  15. Crauel, H. and Flandoli, F., ‘Additive noise destroys a pitchfork bifurcation’, Preprint, 1995 (submitted).

  16. Crauel, H. and Flandoli, F., ‘Attractors for random dynamical systems’, Probability Theory and Related Fields 100, 1994, 365–393.

    Google Scholar 

  17. Ebeling, W., Herzel, H., Richert, W., and Schimansky-Geier, L., ‘Influence of noise on Duffing-van der Pol oscillators’, Zeitschrift für angewandte Mathematik und Mechanik (ZAMM) 66, 1986, 141–146.

    Google Scholar 

  18. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  19. Holmes, P. and Rand, D., ‘Phase portraits and bifurcations of the non-linear oscillator: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttLeary% qr1ngBPrgaiuGacuWF4baEgaWaaiaaiccaciGGRaGaaGiiaiaacIca% rmqr1ngBPrgitLxBI9gBaGGbciab+f7aHjGacUcaieGacaqFZoGae8% hEaG3aaWbaaSqabeaaciGGYaaaaOGaciykaiqb-Hha4zaacaGaaGii% aiGacUcacaaIGaGaeqOSdiMae8hEaGNaaGiiaiGacUcacaaIGaGaeq% iTdqMae8hEaG3aaWbaaSqabeaaciGGZaaaaOGaaGiiaiabg2da9iaa% iccacaaIWaWaaWbaaSqabKazbaoabaGaaiilaaaakiaacYcaaaa!59C1!\[\ddot x + (\alpha + \gamma x^2 )\dot x + \beta x + \delta x^3 = 0^, ,\] International Journal of Non-Linear Mechanics 15, 1980, 449–458.

    Google Scholar 

  20. Horsthemke, W. and Lefever, R., Noise-Induced Transitions, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  21. Johnson, R., ‘On a bifurcation problem of K. R. Schenk-Hoppé’, manuscript, 1995 (submitted).

  22. Kloeden, P. E. and Platen, E., Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  23. Kunita, H., Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, U.K., 1990.

    Google Scholar 

  24. Pardoux, E. and Wihstutz, V., ‘Lyapunov exponents and rotation number of two dimensional linear stochastic systems with small diffusions’, SIAM Journal on Applied Mathematics 48, 1988, 442–457.

    Google Scholar 

  25. Schenk-Hoppé, K. R., ‘The stochastic Duffing-van der Pol equation’, Ph.D. Thesis, Universität Bremen, 1996.

  26. Schenk-Hoppé, K. R., ‘Deterministic and stochastic Duffing-van der Pol oscillators are non-explosive’, ZAMP-Journal of Applied Mathematics and Physics 47, 1996, 1–20.

    Google Scholar 

  27. Schenk-Hoppé, K. R., Keller, H., and Krebs, M., ‘Maple scripts for automatic generation of numerical schemes for stochastic differential equations’. Can be obtained electronically via URL http:/www.mathematik.unibremen.de/∝chenk/, Universität Bremen, 1996.

  28. Schmalfuβ, B., ‘Measure attractors and stochastic attractors’, Technical Report No. 332, Universität Bremen, 1995.

  29. Sri Namachchivaya, N., ‘Stochastic bifurcation’, Journal of Applied Mathematics and Computation 38, 1990, 101–159.

    Google Scholar 

  30. Sri Namachchivaya, N., ‘Co-dimension two bifurcations in the presence of noise’, Journal of Applied Mechanics 58, 1991, 259–265.

    Google Scholar 

  31. Talay, D., ‘Simulation and numerical analysis of stochastic differential systems: A review’, in Lecture Notes in Physics, Vol. 451, Springer-Verlag, Berlin, 1995, pp. 54–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenk-Hoppé, K.R. Bifurcation scenarios of the noisy duffing-van der pol oscillator. Nonlinear Dyn 11, 255–274 (1996). https://doi.org/10.1007/BF00120720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120720

Key words

Navigation