Skip to main content
Log in

A one-dimensional simulation of the interaction between land surface processes and the atmosphere

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A one-dimensional soil-vegetation model is developed for future incorporation into a mesoscale model. The interaction of land surface processes with the overlying atmosphere is treated in terms of three coupled balance equations describing the energy and moisture transfer at the ground and the energy state of the vegetation layer. For a complete description of the interaction, the coupled processes of heat and moisture transport within the soil are included as a multilayer soil model. As model verification, successful reproductions of the observed energy fluxes over vegetated surfaces from the HAPEX-MOBILHY experiment in southwestern France and from the LOTREX-10E/HIBE88 field experiment in Germany are presented. Finally, some sensitivity studies are performed and discussed in order to investigate the influence of different soil and vegetation types on the energy state of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C., Goutorbe, J. P., and Perrier, A.: 1986, ‘HAPEX-MOBILY: A Hydrologic Atmospheric Experiment for the Study of Water Budget and Evaporation Flux at the Climate Scale’, Bull. Amer. Meteorol. Soc. 67, 138–144.

    Google Scholar 

  • Clapp, R. and Hornberger, G.: 1978, ‘Empirical Equations for Some Soil Hydraulic Properties’, Water Resour. Res. 14, 601–604.

    Google Scholar 

  • Crowan, I. R.: 1968, ‘Mass Heat and Momentum Exchange between Stands of Plants and Their Atmospheric Environments’, Water Resour. Res. 94, 523–544.

    Google Scholar 

  • Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation’, J. Geophy. Res. 83, 1889–1903.

    Google Scholar 

  • Dickinson, R. E.: 1984, ‘Modeling Evapotranspiration for Three-Dimensional Global Climate Models’, in J. E. Hanson and T. Takahasi (eds.), Climate Processes and Climate Sensitivity, Amer. Geophys. Union, Geophy Monogr. 29, 58–72.

  • Edlefsen, N. E. and Anderson, A. B. C.: 1943, ‘Thermodynamics of Soil Moisture’, Hilgardia 15, 31–298.

    Google Scholar 

  • Geiger, R.: 1961, Das Klima der bodennahen Luftschicht, Friedr. Vieweg & Sohn, Braunschweig, 646 pp.

    Google Scholar 

  • Hillel, D.: 1980, Fundamentals of Soil Physics, Academic Press, New York, 413 pp.

    Google Scholar 

  • Hillel, D.: 1980, Application of Soil Physics, Academic Press, New York, 385 pp.

    Google Scholar 

  • Jacquemin, G. and Noilhan, J.: 1990, ‘Sensitivity Study and Validation of a Land Surface Parameterization Using the HAPEX-MOBILHY Data Set’, Boundary-Layer Meteorol. 52, 93–134.

    Google Scholar 

  • McCumber, M. C. and Pielke, R. A.: 1981, ‘Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model. Part I: Soil Layer’, J. Geophys. Res. 86, 9929–9938.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophy. Space Phys. 20(4), 851–875.

    Google Scholar 

  • Möller, F.: 1973, Einführung in die Meteorologie Band I, BI-Hochschultaschenbücher, Mannheim, 222 pp.

    Google Scholar 

  • Monteith, J. L.: 1984, Principles of Environmental Physics, Edward Arnold, London, 241 pp.

    Google Scholar 

  • Monteith, J. L.: 1975, Vegetation and the Atmophere. Vol. 1: Principles. Academic Press, 278 pp.

  • Noilhan, J. and Planton, S.: 1989, ‘A Simple Parameterization of Land Surface Processes for Meteorological Models’, Monthly Weather Rev. 117, 536–549.

    Google Scholar 

  • Panhans, W.-G. and Schrodin, R.: 1980, ‘A One-Dimensional Circulation and Climate Model and its Application to the Lower Atmosphere’, Beitr. Phys. Atmoph. 53, 264–294.

    Google Scholar 

  • Philip, J. R.: 1957, ‘Evaporation and Moisture and Heat Fields in the Soil’, Journ. Met. 14, 354–366.

    Google Scholar 

  • Philip, J. R. and De Vries, D. A.: 1957, ‘Moisture Movement in Porous Materials under Temperature Gradients’, Trans. Amer. Geophy. Union 38, 222–232.

    Google Scholar 

  • Pielke, R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, New York, 612 pp.

    Google Scholar 

  • Pinty, J. P., Mascart, P., Richard, E., and Rosset, R.: 1989, ‘An Investigation of Mesoscale Flows Induced by Vegetation Inhomogeneities Using an Evapotranspiration Model Calibrated Against HAPEX-MOILHY Data’, J. Appl. Meteorol. 28, 976–992.

    Google Scholar 

  • Schädler, G., Kalthoff, N., and Fiedler, F.: 1990, ‘Validation of a Model for Heat, Mass and Momentum Exchange over Vegetated Surfaces Using LOTREX-10E/HIBE88 Data’, Beitr. Phys. Atmosph. 63, 85–100.

    Google Scholar 

  • Sellers, P. J., Mintz, Y., Sud, V. C., and Dalcher, A.: 1986, ‘A Simple Model (Si-B) for Use within General Circulation Models’, J. Atm. Sci. 43, 505–531.

    Google Scholar 

  • Sievers, U., Forkel, R., and Zdunkowski, W. G.: 1983, ‘Transport Equations for Heat and Moisture in the Soil and their Application to Boundary Layer Problems’, Beitr. Phys. Atmoph. 56, 58–83.

    Google Scholar 

  • Taconet, O., Bernard, R., and Vidal-Madjar, D.: 1986, ‘Evapotranspiration over Agriculture Region Using a Surface Flux/Temperature Model based on NOAA-AVHRR Data’, J. Clim. Appl. Meteorol. 25, 248–307.

    Google Scholar 

  • Thom, A. S.: 1972, ‘Momentum, Mass and Heat Exchange of Vegetation’, Quart. J. R. Meteorol. Soc. 98, 124–134.

    Google Scholar 

  • Tjernström, M.: 1989, ‘Some Tests with a Surface Energy Balance Scheme, Including a Bulk Parameterization for Vegetation, in a Mesoscale Model’, Boundary-Layer Meteorol. 48, 33–68.

    Google Scholar 

  • Yamada, T. and Mellor, G. L.: 1975, ‘A Simulation of the Wangara Atmospheric Boundary Layer Data’, J. Atm. Sci. 32, 2309–2329.

    Google Scholar 

  • Zdunkowski, W. G., Paegle, J., and Fye, F.: 1975a, ‘The Short-Term Influence of Atmospheric Carbon Dioxide on the Temperature Profile in the Boundary Layer’, Pageoph. 113, 331–353.

    Google Scholar 

  • Zdunkowski, W. G., Paegle, J., and Reilly, J.: 1975b, ‘The Effect of Soil Moisture upon the Atmospheric and Soil Temperature near the Air-Soil Interface’, Arch. Met. Geoph. Biol., Ser. A 24, 245–268.

    Google Scholar 

  • Zdunkowski, W. G., Panhans, W.-G., Welch, R., and Korb, G.: 1982, ‘A Radiation Scheme for Circulation and Climate Models’, Beitr. Phys. Atmoph. 55, 215–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Sections of the present paper are part of a dissertation.

Deutscher Wetterdienst, Zentralamt, 6050, Offenbach, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebert, J., Sievers, U. & Zdunkowski, W. A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Boundary-Layer Meteorol 59, 1–34 (1992). https://doi.org/10.1007/BF00120684

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120684

Keywords

Navigation