Nonlinear Dynamics

, Volume 4, Issue 4, pp 373–387 | Cite as

Stochastic averaging using elliptic functions to study nonlinear stochastic systems

  • Win-Min Tien
  • N. Sri Namachchivaya
  • V. T. Coppola


In this paper, a new scheme of stochastic averaging using elliptic functions is presented that approximates nonlinear dynamical systems with strong cubic nonlinearities in the presence of noise by a set of Itô differential equations. This is an extension of some recent results presented in deterministic dynamical systems. The second order nonlinear differential equation that is examined in this work can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qeguuDJXwAKbacfiGaf8hEaGNbamaacqGHRaWkcaWGJbadcaaIXaGc% cqWF4baEcqGHRaWkcaWGJbadcaaIZaGccqWF4baEdaahaaWcbeqaai% aaiodaaaGccqGHRaWkcqaH1oqzcaWGMbGaaiikaiab-Hha4jaacYca% cqWFGaaicuWF4baEgaGaaiaacMcacqGHRaWkcqaH1oqzdaahaaWcbe% qaaiaaigdacaGGVaGaaGOmaaaaruWrL9MCNLwyaGGbcOGaa43zaiaa% cIcacqWF4baEcaGGSaGae8hiaaIaf8hEaGNbaiaacaGGSaGae8hiaa% IaeqOVdGNaaeikaiaadshacaqGPaGaaiykaiabg2da9iaaicdaaaa!645D!\[\ddot x + c1x + c3x^3 + \varepsilon f(x, \dot x) + \varepsilon ^{1/2} g(x, \dot x, \xi {\text{(}}t{\text{)}}) = 0\] where c1 and c3 are given constants, ξ(t) is stationary stochastic process with zero mean and ε≪1 is a small parameter. This method involves the laborious manipulation of Jacobian elliptic functions such as cn, dn and sn rather than the usual trigonometric functions. The use of a symbolic language such as Mathematica reduces the computational effort and allows us to express the results in a convenient form. The resulting equations are Markov approximations of amplitude and phase involving integrals of elliptic functions. Finally, this method was applied to study some standard second order systems.

Key words

Stochastic averaging nonlinear systems elliptic functions probability density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ariaratnam, S. T. and Srikantaiah, T. K., ‘Parametric instabilities in elastic structure’, J. Stru. Mech. 8, 1978, 349–365.Google Scholar
  2. 2.
    Borodin, A. N., ‘A limit theory for solutions of differential equation with random right-hand side’, Theory Probab. Appl. 2, 1977, 575–595.Google Scholar
  3. 3.
    Byrd, P. and Friedman, M., Handbook of Elliptic Integrals for Engineering and Scientists, Springer-Verlag, Berlin, 1954.Google Scholar
  4. 4.
    Coppola, V. T. and Rand, R. H., ‘Averaging using elliptic functions: approximation of limit cycles’, Acta Mechanica 81, 1990, 125–142.Google Scholar
  5. 5.
    Coppolar, V. T., Averaging of strongly nonlinear oscillators using elliptic functions, PhD. Dissertation, Cornell University, Ithaca NY, 1989.Google Scholar
  6. 6.
    Khasminskii, R. Z., ‘On stochastic processes defined by differential equations with a small parameter’, Theory Probab. Appl. 11, 1966, 211–228.Google Scholar
  7. 7.
    Khasminskii, R. Z., ‘On the principal of averaging for Itô stochastic differential equation’, Kybernetika (Prague) 4, 1968, 260–279.Google Scholar
  8. 8.
    Lin, Y. K., ‘Some observations of the stochastic averaging method’, Proc. Eng. Mech. 1, 1986, 23–27.Google Scholar
  9. 9.
    Papanicolaou, G. C. and Kohler, W., ‘Asymptotic analysis of deterministic and stochastic equations with rapidly varying components’, Commun. Math. Phys. 46, 1976, 217–232.Google Scholar
  10. 10.
    Papanicolaou, G. C., Stroock, D., and Varadhan, S. R. S., ‘Martingale approach to some limits theorems’, in The Duke Turbulence Conference (David Ruelle, ed.), 1976.Google Scholar
  11. 11.
    Roberts, J. B. and Spanos, P. D., ‘Stochastic averaging: an approximate method of solving random vibration problems’, Int. J. Non-Linear Mech. 21, 1986, 111–134.Google Scholar
  12. 12.
    Roberts, J. B., ‘The energy envelope of randomly excited non-linear oscillator’, J. Sound Vib. 60, 1978, 177–185.Google Scholar
  13. 13.
    Sri Namachchivaya, N. and Ariaratnam, S. T., ‘Stochastically perturbed linear gyroscopic systems’, Mech. Struct. & Mach. 15, 1987, 323–345.Google Scholar
  14. 14.
    Sri Namachchivaya, N., ‘Co-dimension two bifurcations in the presence of noise’, J. Appl. Mech. 58, 1990, 259–265.Google Scholar
  15. 15.
    Stratonovich, R. L., Topics in the Theory of Random Noise, Vol. 1, Gordon and Breach, New York, 1963.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Win-Min Tien
    • 1
  • N. Sri Namachchivaya
    • 1
  • V. T. Coppola
    • 2
  1. 1.Aeronautical and Astronautical Engineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.
  2. 2.Department of Aerospace EngineeringUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations