Skip to main content
Log in

The use of electrophoretic markers in seed orchard research

  • Review paper
  • Application of biochemical markers in forest management
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Biochemical markers are ideally suited for addressing questions concerning genetic or parental identity. For production seed orchards, such questions are common as a consequence of the uncertainty of paternity in non-controlled cross situations. During the last decade, electrophoretic procedures have been used extensively to investigate issues such as:

  • - clonal identification,

  • - pollen contamination levels,

  • - mating systems,

  • - supplemental mass pollination (SMP) verification,

  • - patterns of gene flow, and

  • - levels of pollen competition.

A number of patterns have emerged from this work. Most notable, contamination rates are disturbingly high, clonal phenology and pollen application methodology influence SMP success, and phenology and proximity are important in determining paternal success. Results are discussed with reference to orchard management prescriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. T. 1981a. Applying isozyme analyses in tree-breeding programs. In: M. T. Conkle (Ed), Proc. Symp. Isozymes North Am. Forest Trees and Forest Insects, Berkeley, CA, USDA Forest Serv. Gen. Tech. Rep. PSW-48, pp. 60–64.

  • —. 1981b. Population genetics and gene conservation in Pacific Northwest conifers. In: Scudder, G. G. E. and Reveal, J. L. (Eds) Evolution Today, Proc. Sec. Int. Congr. System. and Evol. Biol., Hunt Institute for Botanical Documentation, Pittsburg, pp. 401–415.

    Google Scholar 

  • —. 1983. Application of isozymes in tree breeding. In: Tanskley S. D. and Orton, T. J. (Eds) Isozymes in Plant Genetics and Breeding. Elsevier Science Publishers, Amsterdam, Part A, pp. 381–400.

    Google Scholar 

  • Adams, W. T. and Birkes, D. S. 1989. Estimating mating patterns in forest tree populations. In: Proc. International Workshop on plant biology, biochemical markers in population genetics of forest trees. Inst. for Agroforestry of the National Res. Council of Italy (CNR), Porano-Orvieto, Italy, Oct. 1988.

    Google Scholar 

  • Adams, W. T. and Joly, R. J. 1980. Allozyme studies in loblolly pine seed orchards: clonal variation and frequency of progeny due to self-fertilization. Silvae Genetica 29(1): 1–4.

    Google Scholar 

  • Adams, W. T., Neale, D. B. and Loopstra, C. A. 1988. Verifying control crosses in conifer tree improvement programs. Silvae Genetica 37(3–4):147–152.

    Google Scholar 

  • Altukov, Yv. P., Dukharev, V. A. and Zhirotovskii, L. A. 1983. Selection against rare electrophoretic protein variants and the rate of spontaneous mutability in populations. Genetika 19(2):264–276.

    Google Scholar 

  • Altukov, Yv. P., Krutovskii, K. V., Gafarou, N. L, Dukharev, V. A., and Morozov, G. P. 1986. Allozyme variability in a natural population of Norway Spruce (Picea abies (L.) Karst). 1. Polymorphism systems and mechanisms of their genetic control. Genetika 22(8):2135–2151.

    Google Scholar 

  • Apsit, V. J., Nakamura, R. R. and Wheeler, N. C. 1989. Differential male reproductive success in Douglas-fir. Theor. Appl. Genet. 77:681–684.

    Google Scholar 

  • Barrett, J. D., Knowles, P. H.and Cheliak, W. M. 1987. The mating system in a black spruce clonal seed orchard. Can. J. For. Res. 17(5): 379–382.

    Google Scholar 

  • Bergmann, F. 1987. Characterization of multiclonal aspen cultivars using isozyme electrophoresis. For. Ecol. and Manage. 22(1–2):167–172.

    Google Scholar 

  • Bernatsky, R. and Tanksley, S. D. 1989. Restriction fragments as molecular markers for germ-plasm analysis and utilisation. In: Brown A. D. H., Marshall D. R., Frankel O. H. and Williams J. T. (Eds) The Use of Plant Genetic Resources. Cambridge University Press, Cambridge, 353–362.

    Google Scholar 

  • Blush, T. 1987. An operational trial of supplemental mass pollination in a loblolly pine seed orchard. In: Proc. 20th South. For. Tree Improve. Conf., Charleston, SC.

  • Bridgwater, F., Blush, T., and Wheeler, N. C. 1990. Supplemental mass pollination. In: Proc. Pollen management workshop, Southern Res. Inf. Exchange Group Meeting, Macon, Georgia, July 18–19.

  • Bongarten, B. C., Wheeler, N. C. and Jech, K. S. 1985. Isozyme heterozygosity as a selection criterion for yield improvement in Douglas-fir. In: New ways in forest genetics. Proc. 19th Can. Tree Improv. Assoc., Quebec City, Quebec, Canada, pp. 121–127.

  • Bush, R. M., Smouse, P. E. and Ledig, F. T. 1987. The fitness consequences of mutiplelocus heterozygosity: the relationship between heterozygosity and growth rate in pitch pine (Pinus ridida Mill.). Evolution 41: 787–798.

    Google Scholar 

  • Cheliak, W. M., Morgan, K., Strobeck, C., Yeh, F. C. H. and Dancik, B. P. 1983. Estimation of mating system parameters in plant populations using the EM algorithm. Theor. Appli. Genet. 65:157–161.

    Google Scholar 

  • Cheliak, W. M., Morgan, K, Strobeck, C., Yeh, F. C. H. and Dancik, B. P. 1983. Estimation of mating system parameters in plant populations using the EM algorithm. Theor. Appli. Genet. 65: 157–161.

    Google Scholar 

  • Cheliak, W. M., Skroppa, T. and Pitel, J. A. 1987a. Genetics of the polycross. I. Experimental results from Norway spruce. Theor. Appli. Genet. 73:321–329.

    Google Scholar 

  • Cheliak, W. M., Yeh, F. C. H. and Pitel, J. A. 1987b. Use of electrophoresis in tree improvement programs. For. Chron. 63:89–96.

    Google Scholar 

  • Chung, M. S. 1984. Allozyme variation of Pinus ridida Mill. in an F1-hybrid seed orchard and estimation of the proportion of F1-hybrid seeds by allozyme analysis. J. Korean For. Society 66:109–117.

    Google Scholar 

  • Conkle, M. T. 1971. Inheritance of alcohol dehydrogenase and leucine aminopeptidase isozymes in knobcone pine. For. Science 17(2):190–194.

    Google Scholar 

  • Conkle, M. T. 1972. Analyzing genetic diversity in conifers — isozyme resolution by starch gel electrophoresis. USDA For. Serv. Res. Note, PSW-264 pp. 1–5.

  • Conkle, M. T. and Adams, W. T. 1977. Use of isozyme techniques in forest genetic research. In: Proc. 14th South. For. Tree Improve. Conf. Gainesville, FL. pp. 219–226.

  • Copes, D. L. 1978. Isoenzyme activities differ in compatible and incompatible Douglas-fir graft unions. For. Science 24:297–303.

    Google Scholar 

  • Devlin, B., Roeder, K. and Ellstrand, N. C. 1988. Fractional paternity assignment: theoretical development and comparison to other methods. Theor. Appli. Genet. 76:369–380.

    Google Scholar 

  • Ducharev, V. A., Romanovskij, H.G. and Rjabokon, S.M. 1987. [Heterozygosity and seed production in Scots pine. Lesovedenije 22(2): 87–89.

    Google Scholar 

  • El-Kassaby, Y. A., Fashler, A. M. K. and Sziklai, O. 1984. Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genet. 33:120–125.

    Google Scholar 

  • El-Kassaby, Y. A., Parkinsson, J. and Devitt, W. J. B. 1986. The effect of crown segment on the mating system in a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seed orchard. Silvae Genetica 35:149–155.

    Google Scholar 

  • El-Kassaby, Y. A. and Ritland, K. 1986. Low levels of pollen contamination in a Douglas-fir seed orchard as detected by allozyme markers. Silvae Genetica 35: (5–6) 224–229.

    Google Scholar 

  • El-Kassaby, Y. A., Ritland, K., Fashler, A. M. K. and Devitt, W. J. B. 1988. The role of reproductive phenology upon the mating system of a Douglas-fir seed orchard. Silvae Genetica 37(2): 76–82.

    Google Scholar 

  • El-Kassaby, Y. A., Rudin, D., and Yazdani, R. 1989. Levels of outcrossing and contamination in two Pinus sylvestris L. seed orchards in northern Sweden. Scand. J. For. Res. 4: 41–49.

    Google Scholar 

  • Erickson, V. J. 1987. The influence of distance and floral phenology on pollen gene flow and mating system patterns in a coastal Douglas-fir seed orchard. M.S. Thesis, Oregon State Univ., Corvallis, OR, USA.

    Google Scholar 

  • Eriksson, G., Jonsson, A. and Lindgren, D. 1973. Flowering in a clone trial of Picea abies Karst. Studia Forestalia Suecica Nr 110, Royal College of Forestry, Stockholm.

    Google Scholar 

  • Fast, W., Dancik, B. P. and Bower, R. C. 1986. Mating system and pollen contamination in a Douglas-fir clone bank. Can. J. For. Res. 16:1314–1319.

    Google Scholar 

  • Feret, P. P. and Bergmann, F. 1976. Gel electrophoresis of proteins and enzymes, pp. 49–77. In: Miksche J. P. (Ed) Modern methods in forest genetics. Springer Verlag, Hamburg.

    Google Scholar 

  • Friedman, S. T. and Adams, W. T. 1981. Genetic efficiency in loblolly pine seed orchards, pp. 213–224. In: Proc. 16th South Forest Tree Improve. conf., Blacksburg, VA.

  • Friedman, S. T. and Adams, W. T. 1985. Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). Theor. Appli. Genet. 69:609–615.

    Google Scholar 

  • Geburek, T., Scholz, F., Knabe, W. and Vornweg, A. 1987. Genetic studies by isozyme gene loci on tolerance and sensitivity in an air polluted Pinus sylvestris field trial. Silvae Genetica 36(2):49–53.

    Google Scholar 

  • Harju, A. and Muona, O. 1989. Background pollination in Pinus sylvestris L. seed orchards. Scand. J. For. Res. 4(4): 513–520.

    Google Scholar 

  • Hunter, S. C. 1977. An electrophoretic analysis of isoenzyme variation in a Piedmont loblolly pine seed orchard. M.S. Thesis, North Carolina State Univ., Raleigh, 48 pp.

    Google Scholar 

  • Joly, R. J. and Adams, W. T. 1983. Allozyme analysis of Pitch X Loblolly pine hybrids produced by supplemental mass pollination. For. Science 29(2):423–432.

    Google Scholar 

  • Ledig, F. T., Guries, R. P. and Bonefeld, B. A. 1983. The relation of growth to heterozygosity in pitch pine. Evolution 37(6):1227–1238.

    Google Scholar 

  • Linhart, Y. B. and Mitton, J. B. 1985. Relationships among reproduction, growth rates, and protein heterozygosity in ponderosa pine. Amer. J. Bot. 72(2): 181–184.

    Google Scholar 

  • Lowe, W. and Wheeler, N. C. 1990. Pollen contamination in seed orchards. In: Proc. Pollen management workshop, Southern Res. Inf. Exchange Group Meetings, Macon, Georgia.

  • Mitton, J. B. and Grant, M. C. 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. of Ecol. Syst. 15:479–499.

    Google Scholar 

  • Moran, G. F. and Griffin, A. R. 1985. Non-random contribution of pollen in polycrosses of Pinus radiata D. Don. Silvae Genetica 34:117–121.

    Google Scholar 

  • Moran, G. F., Bell, J. C. and Matheson, A. C. 1980. The genetic structure and levels of inbreeding in a Pinus radiata D. Don seed orchard. Silvae Genetica 29: 190–193.

    Google Scholar 

  • Müller-Starck, G. 1976. A simple method of estimating rates of self-fertilization by analyzing isozymes in tree seeds. Silvae Genetica 25:15–17.

    Google Scholar 

  • Müller-Starck, G. 1986. Genetic means of verifying observance of the law. II. Genetic characterization of orchard produced seeds. In: Muhs, H. J. (Ed) Biochemical genetics and legislation of forest reproductive material. Mitteilungen der Bundesforschungsanstalt fur Forst- and Holzwirtschaft 154: 67–74.

  • — 1987. Genetic differentiation among seed samples from provenances of Pinus sylvestris L. Silvae Genetica 36(5–6): 232–238.

    Google Scholar 

  • Müller-Starck, G., and Ziehe, M. 1984. Reproductive systems in conifer seed orchards. 3. Female and male fitnesses of individual clones realized in seeds of Pinus sylvestris L. Theor. Appl. Genet. 69:173–177.

    Google Scholar 

  • Müller-Starck, G., Ziehe, M. and Hattemer, H. H. 1983. Reproductive systems in conifer seed orchards. 2. Reproductive selection monitored at an LAP gene locus in Pinus sylvestris L. Theor. Appli. Genet. 65:309–316.

    Google Scholar 

  • Muona, O. and Harju, A. 1989. Effective population sizes, genetic variability, and mating system in natural stands and seed orchards of Pinus sylvestris. Silvae Genetica 38(5–6): 221–228.

    Google Scholar 

  • Nagasaka, K. and Szmidt, A. E. 1985. Multilocus analysis of external pollen contamination of a Scots pine (Pinus sylvestris L.) seed orchard. In: Gregorius, H. R. (Ed) Population genetics in Forestry. Lecture notes in Biomathematics 60: 134–138.

  • Nakamura, R. and Wheeler, N. C. 1990. Pollen competition and paternal success in Douglas-fir. Evolution (in press).

  • Neale, D. B. 1984. Population genetic structure of the Douglas-fir shelterwood regeneration system in southwest Oregon. Ph.D. Thesis, Oregon State Univ., Corvallis, OR, USA.

    Google Scholar 

  • Neale, D. B. and Adams, W. T. 1985. The mating system in natural and shelterwood stands of Douglas-fir. Theor. Appli. Genet. 71: 201–207.

    Google Scholar 

  • Neale, D. B., Weber, J. C. and Adams, W. T. 1984. Inheritance of needle tissue isozymes in Douglas-fir. Can J. Gen. Cyto. 26:459–468.

    Google Scholar 

  • O'Malley, D. and Wheeler, N. C. 1986. Differential pollination success of two-pollen parent controlled crosses in Douglas-fir. In: Proc. IUFRO Joint Meeting of working parties on Breeding Theory, Progeny Testing and Seed Orchards, Williamsburg, Virginia (Abstract).

  • Omi, S. K. and Adams, W. T. 1986. Variation in seed set and proportions of outcrossed progeny with clones, crown position, and top pruning in a Douglas-fir seed orchard. Can. J. For. Res. 16(3): 502–507.

    Google Scholar 

  • Paule, L. 1990. Bibliography: Isozymes and forest trees (1968–1989). Sveriges Lantbruksuniversitet, Institutionen for skoglig genetik och vaxtfysiologi Rapport —9.

  • Ritland, K. and EI-Kassaby, Y. A. 1985. The nature of inbreeding in a seed orchard of Douglas fir as shown by an efficient multi-locus model. Theor. Appl. Genet. 71:375–384.

    Google Scholar 

  • Rudin, D. 1986. Developmental trends in the field of biochemical genetics of forest trees. In: Proceedings 18th IUFRO World Congress, Division 2, Vol. 2, pp. 577–588.

  • Rudin, D. and Lindgren, D. 1977. Isozyme studies in seed orchards. Studia Forestalia Suecica 139:1–23.

    Google Scholar 

  • Rudin, D., Muona, O. and Yazdani, R. 1986. Comparison of the mating system of Pinus sylvestris in natural stands and seed orchards. Hereditas 104:15–19.

    Google Scholar 

  • Schoen, D. J. and Stewart, S. C. 1986. Variation in male reproductive investment and male reproductive success in white spruce. Evolution 40(6): 1109–1120.

    Google Scholar 

  • Scholz, F., Gregorius, H. R. and Rudin, D. (Eds) 1989. Genetic Effects of Air Pollutants in Forest Tree Populations. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Shaw, D. V. and Allard, R. W. 1982. Estimation of outcrossing rate in Douglas-fir using isozyme markers. Theor. Appl. Genet. 62:113–120.

    Google Scholar 

  • Shen, X. H., Rudin, D. and Lindgren, D. 1981. Study of pollination patterns in a Scots pine seed orchard by means of isozyme analysis. Silvae Genetica 30(1):7–15.

    Google Scholar 

  • Smith, D. B. and Adams, W. T. 1983. Measuring of pollen contamination in clonal seed orchards with the aid of genetic markers. In: Proc. 17th South. For. Tree Improv. Conf., 64–73.

  • Strauss, S. H. and Conkle, M. T. 1986. Segregation, linkage and diversity of allozymes in Knobcone pine. Theor. Appl. Genet. 72:483–493.

    Google Scholar 

  • Strauss, S. H. and Libby, W. J. 1987. Allozyme heterosis in radiata pine is poorly explained by overdominance. American Naturalist 130(6):879–890.

    Google Scholar 

  • Szmidt, A. E. 1987. Genetic composition of seed orchard crops. For. Ecol. Mang. 19: 227–232.

    Google Scholar 

  • Wheeler, N. C. and Jech, K. S. 1985. Estimating supplemental mass pollination (SMP) success electrophoretically. In: 19th Can. Tree Improv. Conf. pp.111–120.

  • Wheeler, N. C. and Jech, K. S. 1988. Supplemental mass pollination (SMP) in Douglas-fir seed orchards: Biological efficiency and economic evaluation. Weyer. Co. For. Res. Tech. Rep. # 050-3210/25. 31 pp.

  • Wheeler, N. C., Adams, W. T. and Hamrick, J. L. 1990. Pollen distribution in wind-pollinated seed orchards. In: Proc. Pollen Management Workshop, Southern Res. Inf. Exchange Group Meetings, Macon, Georgia.

  • Wiselogel, A. E. and van Buijtenen, J. P. 1988. Probability of equal mating in polymix pollinations by loblolly pine (Pinus taeda L.). Silvae Genetica 27:129–134.

    Google Scholar 

  • Woessner, R. H. and Franklin, E. C. 1973. Continued reliance on wind-pollinated southern pine seed orchards, is it reasonable? pp. 64–73. In: Proc. 12th South. For. Tree Improv. Conf.

  • Yazdani, R., Hadders, G. and Szmidt, A. E. 1986. Supplemental mass pollination in a seed orchard of Pinus sylvestris L. investigated by isozyme analyses. Scand. J. For. Res. 1(3): 309–315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was distibuted within Weyerhaeuser Company as an internal research report.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, N.C., Jech, K.S. The use of electrophoretic markers in seed orchard research. New Forest 6, 311–328 (1992). https://doi.org/10.1007/BF00120650

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120650

Key words

Navigation