Skip to main content
Log in

Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Field data for the unstable, baroclinic, atmospheric boundary layer over land and over the sea are considered in the context of a general similarity theory of vertical heat transfer. The dependence of δθ/θ* upon logarithmic functions of h c z T and stability (through the similarity function C) is clearly demonstrated in the data. The combined data support the conventional formulation for the heat transfer coefficient δθ/θ* when,

  1. (a)

    the surface scaling length is z T (« z 0), the height at which the surface temperature over land is obtained by extrapolation of the temperature profile

  2. (b)

    the height scale is taken as the depth of convective mixing h c

  3. (c)

    the temperature profile equivalent of the von Karman constant is taken as 0.41

  4. (d)

    areal average, rather than single point, values of δθ are employed in strongly baroclinic conditions. No significant effect of baroclinity or the height scale ratio as proposed in the general theory is found. Variations in C about a linear regression relation against stability are most probably due to uncertainties in the areal surface temperature and to experimental errors in general temperature measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AMTEX '75, Data Report, Vol. 2, Aerological Data, Ed. by K. Ninomiya, Meteorological Research Institute, Tokyo.

  • AMTEX '75, Data report, Vol. 3, Surface, Surface Marine, Radar and Oceanographic Observation Data, Ed. by K. Ninomiya, Meteorological Research Institute, and Y. Nagata, Tokyo University, Tokyo.

  • AMTEX '75, Data Report, Vol. 4, Boundary Layer and Radiation Observations, Ed. by Y. Mitsuta, Disaster Prevention Research Institute, Kyoto and T. Kujita, Meteorological Research Institute, Tokyo.

  • Arya, S. P. S.: 1975, ‘Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer’, Quart. J. R. Meteorol. Soc. 101, 147–161.

    Article  Google Scholar 

  • Arya, S. P. S.: 1977, ‘Suggested Revisions to Certain Boundary Layer Parameterization Schemes Used in Atmospheric Circulation Models’, Mon. Wea. Rev. 105, 215–227.

    Article  Google Scholar 

  • Arya, S. P. S. and Sundararajan, A.: 1976, ‘An Assessment of Proposed Similarity Theories for the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 10, 149–166.

    Article  Google Scholar 

  • Arya, S. P. S. and Wyngaard, J. C.: 1975, ‘Effect of Baroclinity on Wind Profiles and the Geostrophic Drag Law for the Convective Planetary Boundary Layer’, J. Atmos. Sci. 32, 767–778.

    Article  Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Article  Google Scholar 

  • Carson, D. J.: 1973, ‘The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer’, Quart. J. R. Meteorol. Soc. 99, 450–467.

    Article  Google Scholar 

  • Clarke, R. H.: 1970, ‘Observational Studies in the Atmospheric Boundary Layer’, Quart. J. R. Meteorol. Soc. 94, 91–114.

    Article  Google Scholar 

  • Clarke, R. H.: 1972, ‘Discussion of Observational Studies in the Atmospheric Boundary Layer’, Quart. J. R. Meteorol. Soc. 98, 234–235.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data’, Technical Paper No. 19, CSIRO Div. Meteorol. Phys., 362pp.

  • Clarke, R. H. and Hess, G. D.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory’, Boundary-Layer Meteorol. 7, 267–287.

    Article  Google Scholar 

  • Deardorff, J. W.: 1972, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’, J. Atmos. Sci. 29, 91–115.

    Article  Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-profile Relations’. Boundary-Layer Meteorol. 1, 363–372.

    Article  Google Scholar 

  • Francey, R. J. and Garratt, J. R.: 1978a, ‘Eddy Flux Measurements over the Ocean and Related Transfer Coefficients’, Boundary-Layer Meteorol. 14, 153–166.

    Article  Google Scholar 

  • Francey, R. J. and Garratt, J. R.: 1978b, ‘Is an observed wind speed dependence in Amtex 1975 heat transfer coefficients real?’ Submitted to itBoundary-Layer Meteorol.

  • G.A.R.P., 1973, GARP Publication Series No. 13, The Air-Mass Transformation Experiment, WMO-ICSU.

  • Garratt, J. R.: 1977, ‘Review of Drag Coefficients over Oceans and Continents’, Mon. Wea. Rev. 105, 915–929.

    Article  Google Scholar 

  • Garratt, J. R.: 1978a, ‘Flux-profile relations above tall vegetation’, Quart. J. Roy. Meteorol. Soc. 104, 199–212.

    Article  Google Scholar 

  • Garratt, J. R.: 1978, ‘Transfer characteristics for a Heterogeneous Surface of Large Aerodynamic Roughness’, Quart. J. Roy. Meteorol. Soc. 104, 491–502.

    Article  Google Scholar 

  • Garratt, J. R. and Hicks, B. B.: 1973, ‘Momentum Heat and Water Vapour Transfer to and from Natural and Artificial Surfaces’, Quart. J. Roy. Meteorol. Soc., 99, 680–687.

    Article  Google Scholar 

  • Hasse, L.: 1971, ‘The Sea Surface Temperature Deviation and the Heat Flow at the Sea-Air Interface’, Boundary-Layer Meteorol. 1, 368–379.

    Article  Google Scholar 

  • Hess, G. D.: 1973, ‘On Rossby-Number Similarity Theory for a Baroclinic Planetary Boundary Layer’, J. Atmos. Sci. 30, 1722–1723.

    Article  Google Scholar 

  • Hicks, B. B.: 1976, ‘Wind Profile Relationships from the ‘Wangara’ Experiment’, Quart. J. Roy. Meteorol. Soc. 102, 535–551.

    Google Scholar 

  • Katsaros, K. B.: 1977, ‘The Sea Surface Temperature Deviation at Very Low Wind Speeds; Is there a Limit?’ Tellus 29, 229–239.

    Article  Google Scholar 

  • Kazanski, A. B. and Monin, A. S.: 1961, ‘On the Dynamical Interaction between the Atmosphere and the Earth's Surface’, Izv. Akad. Nauk. SSSR, Ser. Geofiz. 5, 786–788.

    Google Scholar 

  • Lettau, H. H. and Davidson, B.: 1957, ‘Exploring the Atmosphere's First Mile’, Vols. 1 and 2, Permagon Press, New York.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Atmosphere Near the Ground’, Tr. Akad. Nauk. SSR, Geofiz. Inst. 151, 163–187.

    Google Scholar 

  • Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’, J. Appl. Meteorol. 9, 857–861.

    Article  Google Scholar 

  • Stull, R. B.: 1978a, ‘The Energetics of Entrainment Across a Density Interface’, J. Atmos. Sci. 33, 1260–1267.

    Google Scholar 

  • Stull, R. B.: 1978b, ‘Mixed-Layer Depth Model Based on Turbulent Energetics’, J. Atmos. Sci. 33, 1268–1278.

    Article  Google Scholar 

  • Tennekes, H.: 1970, ‘Free Convection in the Turbulent Ekman Layer of the Atmosphere’, J. Atmos. Sci. 27, 1027–1034.

    Article  Google Scholar 

  • Tennekes, H.: 1973a, ‘A Model for the Dynamics of the Inversion Above a Convective Boundary Layer’, J. Atmos. Sci., 30, 558–567.

    Article  Google Scholar 

  • Tennekes, H.: 1973b, ‘The Logarithmic Wind Profile’, J. Atmos. Sci. 30, 234–238.

    Article  Google Scholar 

  • Wyngaard, J. C., Arya, S. P. S. and Coté, O. R.: 1974, ‘Some Aspects of the Structure of Convective Planetary Boundary Layers’, J. Atmos. Sci. 31, 747–754.

    Article  Google Scholar 

  • Yaglom, A. M.: 1977, ‘Comments on Wind and Temperature Flux Profile Relationships’, Boundary-Layer Meteorol. 11, 89–102.

    Article  Google Scholar 

  • Yamada, T.: 1976, ‘On the Similarity Functions A, B and C of the Planetary Boundary Layer’, J. Atmos. Sci., 33, 781–793.

    Article  Google Scholar 

  • Yordanov, D. and Wipperman, F.: 1972, ‘The Parameterization of the Turbulent Fluxes of Momentum, Heat and Moisture at the Ground in a Baroclinic Planetary Boundary Layer’. Beitr. Phys. Atmos. 45, 58–65.

    Google Scholar 

  • Zilitenkevitch, S. S.: 1970, ‘Dynamics of the Atmospheric Boundary Layer’. Leningrad, Gidrometeor., 291 pp.

    Google Scholar 

  • Zilitinkevitch, S. S. and Chalikov, D. V.: 1968, ‘The Laws of Resistance and of Heat and Moisture Exchange in The Interaction Between the Atmosphere and on Underlying Surface’, Izv. Atmos. Oceanic Phys. 4, 438–441.

    Google Scholar 

  • Zilitinkevitch, S. S. and Deardorff, J. W.: 1974, ‘Similarity Theory for the Planetary Boundary Layer of Time-Dependent Height’, J. Atmos. Sci. 31, 1449–1452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garratt, J.R., Francey, R.J. Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer. Boundary-Layer Meteorol 15, 399–421 (1978). https://doi.org/10.1007/BF00120603

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120603

Keywords

Navigation