Skip to main content
Log in

On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso-β domains (i.e., 20–200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arya, S. P. S.: 1972, ‘The Critical Condition for the Maintenance of Turbulence in Stratified Flows’, Quart. J. Roy. Meteorol. Soc. 98, 264–273.

    Google Scholar 

  • André, J. C. and Mahrt, L.: 1982, ‘The Nocturnal Surface Inversion and Influence of Clear-air Radiative Cooling’, J. Atmos. Sci. 39, 864–878.

    Google Scholar 

  • Blackadar, A. K.: 1979, ‘High Resolution Models of the Planetary Boundary Layer’, in J. Pfafflin and E. Ziegler (eds.), Advances in Environmental Science and Engineering 1 Gordon and Breach, pp. 50–85.

  • Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stable Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.

    Google Scholar 

  • Dickerson, M. H. (ed.): 1980, A Collection of Papers Based on Drainage Wind Studies in the Geysers Area of Northern California: Part I, UCID-18884, ASCOT-80-7, 22 chapters.

  • Dickerson, M. H. and Gudiksen, P. H. (Eds.): 1983, ‘Atmospheric Studies in Complex Terrain’, Technical Progress Report FY-1979 through FY-1983. Lawrence Livermore National Laboratory, UCID-19851, ASCOT84-1, 367pp.

  • Doran, J. C. and Horst, T. W.: 1983. ‘Observations and Models of Simple Nocturnal Slope Flows’, J. Atmos. Sci. 40, 708–717.

    Google Scholar 

  • Ellison, T. H. and Turner, J. S.: 1959, ‘Turbulent Entrainment in Stratified Flows’, J. Fluid Mech., 6, 423–448.

    Google Scholar 

  • Garratt, J. R. and Ryan, B. F.: 1989, ‘The Structure of the Stable Stratified Internal Boundary Layer in Offshore Flow over the Sea’, Boundary Layer Meteorol. 47, 17–40.

    Google Scholar 

  • Kondo, H.: 1984, ‘The Difference of the Slope Wind Between Day and Night’, J. Meteorol. Soc. Japan 62, 224–232.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1977, ‘A Numerical Study of the Air Flow over Irregular Terrain’, Contrib. Atmos. Phys. 50, 98–113.

    Google Scholar 

  • Manins, P. C. and Sawford, B. L.: 1979a, ‘Katabatic Winds: A Field Case Study’, Quart. J. Roy. Meteorol. Soc. 105, 1011–1025.

    Google Scholar 

  • Manins, P. C. and Sawford, B. L.: 1979b, ‘A Model of Katabatic Winds’, J. Atmos. Sci. 36, 619–630.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1984, ‘Numerical Simulation of Slope and Mountain Flow’, J. Climate Appl. Meteorol. 23, 1441–1453.

    Google Scholar 

  • Nappo, C. J. and Rao, K. S.: 1987, ‘A Model Study of Pure Katabatic Flows’, Tellus 39A, 61–71.

    Google Scholar 

  • Nieuwstadt, F. T. H.: 1985, ‘A Model for the Stationary, Stable Boundary Layer’, in J. C. R. Hunt (ed.), Turbulence and Diffusion in Stable Environment, Clarendon Press, Oxford, pp. 149–179.

    Google Scholar 

  • Nieuwstadt, F. T. H. and Tennekes, H.: 1981, ‘A Rate Equation for the Nocturnal Boundary-Layer Height’, J. Atmos. Sci. 38, 1418–1428.

    Google Scholar 

  • Pielke, R. A.: 1974, ‘A Three-Dimensional Numerical Model of the Sea Breezes over South Florida’, Mon. Wea. Rev. 102, 115–239.

    Google Scholar 

  • Prandtl, L.: 1942, ‘Fuehrer durch die Stromunglehre. Braunschweig’, Viewing und Sohn, 382pp.

  • Rao, K. S. and Snodgrass, H. F.: 1981, ‘A Non-Stationary Nocturnal Drainage Flow Model’, Boundary Layer Meteorol. 20, 309–320.

    Google Scholar 

  • Segal, M., Mahrer, Y., and Pielke, R. A.: 1982, ‘Application of a Numerical Mesoscale Model for Determining Persistent Regional Climatological Patterns’, J. Appl. Meteorol. 21, 1754–1762.

    Google Scholar 

  • Yamada, T.: 1979, ‘Prediction of the Nocturnal Surface Inversion Height’, J. Appl. Meteorol. 18, 526–531.

    Google Scholar 

  • Yasuda, N., Kondo, J., and Sato, T.: 1986, ‘Drainage Flow Observed in a V-shaped Valley’, J. Meteorol. Soc. Japan 64, 283–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Z.J., Garratt, J.R., Segal, M. et al. On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows. Boundary-Layer Meteorol 51, 77–97 (1990). https://doi.org/10.1007/BF00120462

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120462

Keywords

Navigation