Skip to main content
Log in

Diabatic wind speed profiles in coastal regions: Comparison of an internal boundary layer (IBL) model with observations

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A model is presented to transform wind speed observations at a single height over sea or near the coast to any possible location and height in a topographic flat coastal region (up to distances of about 5 km from the coast and up to heights of 100 m). Only moderate and strong winds from the sea are considered, which are particularly important for wind energy applications. The model, called ‘diabatic coast model’, which is based on the well known internal boundary layer (IBL) concept and Monin-Obukhov similarity theory, describes the effects of the roughness transition from sea to land as well as the effect of stability on the shape of the profiles and the IBL growth. The predicted IBL heights are compared with published data.

In the second part of this paper, the model is compared with measurements taken at the Maasvlakte location near the Dutch coast. It is shown that a neutral formulation of the IBL height is sufficient to model the overall mean wind speed with height, but that stability corrections are needed to describe the diurnal variations in wind speed properly. Finally, an application is given, where a single routine wind speed observation at the coast, combined with air-water temperature differences is used to predict the wind speed at 500m from the coast at heights of 10 and 53 m. The results are in good agreement with the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A.: 1978, ‘The Height of the Planetary Boundary Layer and the Production of Circulation in a Sea Breeze Model’, J. Atmos. Sci. 35, 1231–1239.

    Google Scholar 

  • Blackadar, A. K. and Tennekes, H.: 1968, ‘Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers’, J. Atmos. Sci. 25, 1015–1020.

    Google Scholar 

  • Beljaars, A. C. M., Walmsley, J. L., and Taylor, P. A.: 1987, ‘A Mixed Spectral Finite Difference Model for Neutrally Stratified Boundary Layer Flow over Roughness Changes and Topography’, Boundary-Layer Meteorol. 38, 273–303

    Google Scholar 

  • Bergström, H.: 1986, ‘A Simplified Boundary Layer Wind Model for Practical Application’, J. Clim. Appl. Meteorol. 25, 813–824

    Google Scholar 

  • Bergström, H., Johansson, P., and Smedman, A.: 1988, ‘A Study of Wind Speed Modification and Internal Boundary-Layer Heights in a Coastal Region’, Boundary-Layer Meteorol. 42, 313–335.

    Google Scholar 

  • Bradley, E. F.: 1968, ‘A Micrometeorological Study of Velocity Profiles and Surface Drag in the Region Modified by a Change in Surface Roughness’, Quart. J. Roy. Meteorol. Soc. 94, 361–379.

    Google Scholar 

  • Busch, N. E.: 1973, ‘On the Mechanics of Atmospheric Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, Am. Meteorol. Soc.

  • Davenport, A. G.: 1960, ‘Rationale for Determining Design Wind Velocities’, J. Struct. Div. Am. Soc. Civ. Eng. 86, 39–68.

    Google Scholar 

  • Doran, J. C. and Gryning, S.-E.: 1987, ‘Wind and Temperature Structure over a Land-Water-Land Area’, J. Clim. Appl. Meteorol. 26, 973–979

    Google Scholar 

  • Driedonks, A. G. M.: 1982, ‘Models and Observations of the Growth of the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 23, 283–306.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.

    Google Scholar 

  • Elliott, W. P.: 1958, ‘The Growth of the Atmospheric Internal Boundary Layer’, Trans. Am. Geophys. Union 39, 1–48

    Google Scholar 

  • Garratt, J. R.: 1987, ‘The Stable Stratified Internal Boundary Layer for Steady and Diurnally Varying Offshore Flow’, Boundary-Layer Meteorol. 38, 369–394.

    Google Scholar 

  • Holtslag, A. A. M.: 1984, ‘Estimates of Diabatic Wind Profiles from Near Surface Weather Observations’, Boundary-Layer Meteorol. 29, 225–250.

    Google Scholar 

  • Holtslag, A. A. M. and de Bruin, H. A. R.: 1988, ‘Applied Modelling of the Nighttime Surface Energy Balance over Land’, J. Appl. Meteorol. 22, 689–704

    Google Scholar 

  • Hsu, S. A.: 1986, ‘A Note on Estimating the Height of the Convective Internal Boundary Layer near Shore’, Boundary-Layer Meteorol. 35, 311–316.

    Google Scholar 

  • Jensen, N. O.: 1978, ‘Change of Surface Roughness and the Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 104, 351–356.

    Google Scholar 

  • Jensen, N. O., Petersen, E. L., and Troen, I.: 1984, ‘Extrapolation of Mean Wind Statistics with Special Regard to Wind Energy Applications’, World Meteorol. Org., WCP-86, 85 pp.

  • Large, W. G. and Pond, S.: 1982, ‘Sensible and Latent Heat Flux Measurements over the Ocean’, J. Phys. Oceanogr. 12, 464–482.

    Google Scholar 

  • Larsen, S. E., Hedegaard, K., and Troen, I.: 1982, ‘The Change of Terrain Roughness Problem Extended to Mesoscale Fetches’, in Proc. First International Conference on Meteorology and Air/Sea Interaction of the Coastal Zone, The Hague, Netherlands (Am. Meteorol. Soc., Boston, USA), pp. 8–13.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘Some Aspects of the Turbulent Stable Boundary Layer’, Boundary-Layer Meteorol. 30, 31–55.

    Google Scholar 

  • Ogawa, Y. and Ohara, T.: 1985, ‘The Turbulent Structure of the Internal Boundary Layer Near the Shore, Part 1: Case Study’, Boundary-Layer Meteorol. 31, 369–384.

    Google Scholar 

  • Panofsky, H. A. and Townsend, A. A.: 1964, ‘Change of Terrain Roughness and the Wind Profile’, Quart. J. Roy. Meteorol. Soc. 90, 147–155.

    Google Scholar 

  • Pasquill, P.: 1972, ‘Some Aspects of Boundary Layer Description’, Quart. J. Roy. Meteorol. Soc. 98, 468–494.

    Google Scholar 

  • Pearson, R., Carboni, G., and Brusasca, G.: 1983, ‘The Sea Breeze with Mean Flow’, Quart. J. Roy. Meteorol. Soc. 109, 809–830.

    Google Scholar 

  • Rao, K. S.: 1975, ‘Effect of Thermal Stratification on the Growth of the Internal Boundary Layer’, Boundary-Layer Meteorol. 8, 227–234.

    Google Scholar 

  • Rao, K. S., Wyngaard, J. C., and Coté, O. R.: 1974, ‘The Structure of the Two-Dimensional Internal Boundary Layer over a Sudden Change of Surface Roughness’, J. Atmos. Sci. 31, 738–746.

    Google Scholar 

  • Raynor, G. S., Sethuraman, S., and Brown, R. M.: 1979, ‘Formation and Characteristics of Coastal Internal Boundary Layers During Onshore Flows’, Boundary-Layer Meteorol. 16, 487–514

    Google Scholar 

  • Rotunno, R.: 1983, ‘On the Linear Theory of the Land Sea Breeze’, J. Atmos. Sci. 40, 1999–2009.

    Google Scholar 

  • Smedman-Högström, A. S. and Högström, U.: 1978, ‘A Practical Method for Determining Wind Frequency Distributions for the Lowest 200 m from Routine Meteorological Data’, J. Appl. Meteorol. 17, 942–954.

    Google Scholar 

  • Stunder, M. and Sethuraman, S.: 1985, ‘A Comparative Study of the Coastal Internal Boundary-Layer Height Equations’, Boundary-Layer Meteorol. 32, 177–204.

    Google Scholar 

  • Taylor, P. A. and Lee, R. J.: 1984, ‘Simple Guidelines for Estimating Wind Speed Variations due to Small Scale Topographic Features’, Climatol. Bull. (Canadian Meteorol. Oceanogr. Soc.) 18, 3–22.

    Google Scholar 

  • Tennekes, H.: 1973, ‘Similarity Laws and Scale Relations in Planetary Boundary Layers’, in D. A. Haugen (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc.

  • Townsend, A. A.: 1965, ‘The Response of a Turbulent Boundary Layer to Abrupt Changes in Surface Conditions’, J. Fluid Mech. 22, 799–822

    Google Scholar 

  • Ueda, H.: 1983, ‘Effects of External Parameters on the Flow Field in the Coastal Region — A Linear Model’, J. Clim. Appl. Meteorol. 22, 312–321.

    Google Scholar 

  • Van Dop, H., Steenkist, R., and Nieuwstadt, F. T. M.: 1979, ‘Revised Estimates for Continuous Shoreline Fumigation’, J. Appl. Meteorol. 18, 133–137.

    Google Scholar 

  • Van Ulden, A.: 1978, ‘Simple Estimates for Vertical Diffusion from Sources Near the Ground’, Atmos. Environ. 12, 2125–2129.

    Google Scholar 

  • Van Ulden, A. and Holtslag, A. A. M.: 1985, ‘Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications’, J. Clim. Appl. Meteorol. 24, 1196–1207

    Google Scholar 

  • Van Wijk, A. J. M., Beljaars, A. C. M., Holtslag, A. M., and Turkenburg, W. C.: 1989. ‘Evaluation of Stability Corrections in Wind Speed Profiles over the North-Sea’, submitted to J. Wind Eng. Indust. Aerodyn.

  • Walmsley, J. L.: 1988, ‘On Theoretical Wind Speed and Temperature Profiles over the Sea with Applications to Data from Sable Island, Nova Scotia’, Atmos.-Ocean 26, 203–233.

    Google Scholar 

  • Wieringa, J.: 1980, ‘Representativeness of Wind Observations at Airports’, Bull. Am. Meteorol. Soc. 61, 962–971.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer’, Boundary-Layer Meteorol. 3, 141–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beljaars, A.C.M., Holtslag, A.A.M. & Turkenburg, W.C. Diabatic wind speed profiles in coastal regions: Comparison of an internal boundary layer (IBL) model with observations. Boundary-Layer Meteorol 51, 49–75 (1990). https://doi.org/10.1007/BF00120461

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120461

Keywords

Navigation