Skip to main content
Log in

Triggering of atmospheric circulations by moisture inhomogeneities of the earth's surface

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A two-dimensional mesoscale soil-atmosphere model is used to simulate the triggering of atmospheric convection by horizontally varying soil water content. The variation is periodic with a wavelength λ between 4 and 40 km, which is considered a realistic scale for the variation of land surface characteristics. Three stages of convection can be clearly discerned: a short initial stage when convection sets in and where the size of the conective cells is determined by λ, a mature stage with well developed cells whose size is still determined by λ, and a decay/transformation stage, characterized by the formation of narrow regions of strong updrafts and wide regions of moderate downdrafts, independent of λ. Parameters relevant for the transition are given, and the importance of the feedback between soil and atmosphere is demonstrated. The dependence of convective parameters, e.g., height of the convective layer, vertical velocity and fluxes of heat and moisture on λ is investigated. The calculations of the mature stage are compared with the predictions of a linear model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A.: 1984, ‘Enhancement of Convective Precipitation by Mesoscale Variations in Vegetative Covering in Semiarid Regions’, J. Climate Appl. Meteorol. 23, 541–554.

    Google Scholar 

  • Atwater, M. A. and Brown, P. S.: 1974, ‘Numerical Calculation of the Latitudinal Variation of Solar Radiation for an Atmosphere of Varying Opacity’, J. Appl. Meteorol. 13, 289–297.

    Google Scholar 

  • Berényi, D.: 1967, Mikroklimatologie, G. Fischer, Stuttgart.

    Google Scholar 

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux Profile Relationships in the Atmospheric Boundary Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Clapp, R. B. and Hornberger, G. M.: 1978, ‘Empirical Equations for Some Soil Hydraulic Properties’, Water Resources Res. 14, 601–604.

    Google Scholar 

  • Dorwarth, G.: 1986, ‘Numerische Berechnung des Druckwiderstandes typischer Geländeformen’, Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung der Universität Karlsruhe, No. 6.

  • Durran, D. R.: 1981, ‘The Effects of Moisture on Mountain Lee Waves’, Massachussetts Institute of Technology and National Center for Atmospheric Research Cooperative ThesisNo. 65, Boulder, Colorado.

    Google Scholar 

  • Fiedler, F.: 1972, ‘The Effect of Baroclinicity on the Resistance Law in a Diabatic Ekman Layer’, Beitr. Phys. Atmos. 45, 164–172.

    Google Scholar 

  • Fleagle, R. G. and Businger, J. A.: 1980, An Introduction to Atmospheric Physics, Academic Press, New York.

    Google Scholar 

  • Gill, A. E.: 1985, Atmosphere-Ocean Dynamics, Academic Press, New York.

    Google Scholar 

  • Huang, X.-Y.: 1988, ‘On the Hysteretic Behaviour of Moist Convection’, Tellus 40A, 237–247.

    Google Scholar 

  • Kessler, E.: 1969, ‘On the Distribution and Continuity of Water Substance in Atmospheric Circulations’, Meteorol. Monographs 32, 1–84.

    Google Scholar 

  • Kondrat'yev, J.: 1969, Radiation in the Atmosphere, Academic Press, New York.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1977, ‘A Numerical Study of the Airflow Over Irregular Terrain’, Beitr. Phys. Atmosph. 50, 98–113.

    Google Scholar 

  • McCumber, M. C. and Pielke, R. A.: 1981, ‘Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model. 1. Soil Layer’, J. Geophys. Res. 86, C10, 9929–9938.

    Google Scholar 

  • McDonald, J. E.: 1960, ‘Direct Absorption of Solar Radiation by Atmospheric Water Vapor’, J. Meteorol. 17, 319–328.

    Google Scholar 

  • McDonald, J. E.: 1963, ‘The Saturation Adjustment in Numerical Modeling of Fog’, J. Atmos. Sci. 20, 476–478.

    Google Scholar 

  • Müller, D. and Kottmeier, Chr.: 1982, ‘Die Auswirkungen von Bodeneigenschaften auf die regionalen Konvektionsunterschiede in Norddeutschland’, Meteorol. Rundschau 35, 84–91.

    Google Scholar 

  • Orlanski, I.: 1976, ‘A Simple Boundary Condition for Unbounded Hyperbolic Flows’, J. Comp. Phys. 21, 251–259.

    Google Scholar 

  • Pielke, R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, Orlando.

    Google Scholar 

  • Staley, D. O. and Jurica, G. M.: 1970, ‘Flux Emissivity Tables for Water Vapor, Carbon Dioxide and Ozone’, J. Appl. Meteorol. 9, 365–372.

    Google Scholar 

  • Telford, J. W. and Warner, J.: 1962, ‘On the Measurement from an Aircraft of Buoyancy and Vertical Air Velocity in Clouds’, J. Atmos. Sci. 19, 415–423.

    Google Scholar 

  • Van Delden, A.: 1985, ‘On the Preferred Mode of Cumulus Convection’, Beitr. Phys. Atmosph. 58, 202–219.

    Google Scholar 

  • Van Delden, A. and Oerlemans, J.: 1982, ‘Grouping of Clouds in a Numerical Cumulus Convection Model’, Beitr. Phys. Atmosph. 55, 239–252.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘Boundary Layers in the Atmosphere’, in Parameterization of Sub-Grid Scale Processes’, GARP Publication Series No. 8.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schädler, G. Triggering of atmospheric circulations by moisture inhomogeneities of the earth's surface. Boundary-Layer Meteorol 51, 1–29 (1990). https://doi.org/10.1007/BF00120459

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120459

Keywords

Navigation