Skip to main content
Log in

Prediction of orographic precipitation using cartesian coordinates and a single prognostic equation for the water substance

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The three-dimensional compressible non-hydrostatic mesoscale model ADREA, developed at NCSR “Demokritos” for wind field and dispersion predictions in complex terrain, is used to perform two-dimensional simulations of orographically induced precipitation. The model makes use of a simple cartesian grid by allowing blocked areas in the grid volumes and grid faces which are crossed by the irregular topography (the so-called porous-medium concept). Additionally, since we are seeking both simplicity and low computational requirements, only one prognostic equation for the whole of the water substance is implemented. The model equations are based on the theory developed for multicom-ponent/multiphase mixtures and give full account of the effects arising from the relative motion between water particles and moist air. The evaluation of the feasibility of this approach is obtained by comparing model predictions with measurements and analytical results concerning orographic precipitation episodes in the mountain barrier of Sierra Nevada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amanatidis, G. T., Housiadas, C., and Bartzis, J. G.: 1991, ‘Spatial Distribution of Rainfall in the Greater Athens Area’, Meteorol. Mag. 120, 41–50.

    Google Scholar 

  • Bartzis, J. G.: 1989, ‘Turbulent Diffusion Modelling for Wind Flow and Dispersion Analysis’, Atmos. Environ. 23, 1963–1969.

    Google Scholar 

  • Bartzis, J. G., Varvayanni, M., Catsaros, N., Konte, K., and Amanatidis, G. T.: 1990, ‘Wind Field and Dispersion Modelling in Complex Terrain’, Commission of the European Communities, Report EUR 13013, Vol. 1, pp. 77–96.

    Google Scholar 

  • Bartzis, J. G., Venetsanos, A. G., Varvayanni, M., Catsaros, N., and Megaritou, A.: 1991, ‘ADREA-I: A Transient Three Dimensional Transport Code for Complex Terrain and Other Applications’, Nucl. Technol. (in press).

  • Bird, R. B., Stewart, W. K., and Lightfoot, E. N.: 1960, Transport Phenomena, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Colton, D. E.: 1976, ‘Numerical Simulation of the Orographically Induced Precipitation Distribution for Use in the Hydrologic Analysis’, J. Appl. Meteorol. 15, 1241–1251.

    Google Scholar 

  • Cotton, W. R. and Anthes, R. A.: 1984, The Dynamics of Clouds and Mesoscale Meteorological Systems. Vol. I: The Dynamics of Clouds, Academic Press, New York.

    Google Scholar 

  • Deardorff, J. W.: 1976, ‘Usefulness of Liquid-Water Potential Temperature in Shallow-Cloud Model’, J. Appl. Meteorol. 15, 98–102.

    Google Scholar 

  • Dobran, F.: 1985, ‘Theory of Multiphase Mixtures. A Thermomechanical Formulation’, Int. J. Multiphase Flow 11, 1–30.

    Google Scholar 

  • Dutton, J. A.: 1976, The Ceaseless Wind. An Introduction to the Theory of Atmospheric Motion, McGraw-Hill, New York.

    Google Scholar 

  • Elliot, R. D. and Shaffer, R. W.: 1962, ‘The Development of Quantitative Relatiohships between Orographic Precipitation and Airmass Parameters for use in Forecasting and Cloud Seeding Evaluation’, J. Appl. Meteorol. 1, 143–154.

    Google Scholar 

  • Gross, G.: 1986, ‘A Numerical Study of the Land and See Breeze Including Cloud Formation’, Contrib. Atmos. Phys. 59, 97–114.

    Google Scholar 

  • Hales, J. M.: 1989, ‘A Generalised Multidimensional Model for Precipitation Scavenging and Atmospheric Chemistry’, Atmos. Environ. 23, 2017–2031.

    Google Scholar 

  • Ishii, M.: 1975, Thermo-Fluid Dynamic Theory of Two-Phase Flows, Eyrolles, Paris.

    Google Scholar 

  • Ishii, M.: 1977, One-Dimensional Drift Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes, Argonne National Laboratory, Illinois, Report ANL-77–47.

    Google Scholar 

  • Kessler, E.: 1969, On the Distribution and Continuity of Water Substance in Atmospheric Circulations, Meteorol. Monogr. 32.

  • Kreitzberg, C. W. and Perkey, D. J.: 1977, ‘Release of Potential Instability: Part II. The Mechanism of Convective/Mesoscale Interaction’, J. Atmos. Sci. 34, 1569–1595.

    Google Scholar 

  • Lin, Y. L., Parley, R. D., and Orville, H. D.: 1983, ‘Bulk Parameterization of the Snow Field in a Cloud Model’, J. Clim. Appl. Meteorol. 22, 1065–1092.

    Google Scholar 

  • Nickerson, E. C., Richard, E., Rosset, R., and Smith, D. R.: 1986, ‘The Numerical Simulation of Counds, Rain, and Airflow over the Vosges and Black Forest Mountains: A Meso-βModel with Parameterized Microphysics’, Mon. Weather Rev. 114, 398–414.

    Google Scholar 

  • Ogura, Y. and Takahashi, T.: 1971, ‘Numerical Simulation of the Life Cycle of a Thunderstorm Cell’, Mon. Weather Rev. 99, 895–911.

    Google Scholar 

  • Patankar, S. V.: 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation.

  • Pielke, R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, New York.

    Google Scholar 

  • Richard, E. and Chaumerliac, N.: 1989. ‘Effects of Different Rain Parameterizations on Simulation of Mesoscale Orographic Precipitation’, J. Appl. Meteorol. 28. 1197–1212.

    Google Scholar 

  • Rosten, H. I. and Spalding, D. B.: 1987, The Phoenics Beginner's Guide, CHAM Limited, England, Report Number TR/100.

    Google Scholar 

  • Sha, W. T., Domanus, H. M., Schmitt, R. C., Oras, J. J., and Lin, E. I. H.: 1978, ‘Commix-1: A Three-Dimensional Transient Single-Phase Component Computer Program for Thermal-Hydraulic Analysis’, Argonne National Laboratory, Illinois. Report ANL-82–25, Vol. I, also: ibid, Sha, W. T., Domanus, H. M., Schmitt, R. C., Oras, J. J., and Lin, E. I. H.: 1978, Commix-1: A Three-Dimensional Transient Single-Phase Component Computer Program for Thermal-Hydraulic Analysis, U.S. Nuclear Regulatory Commission, Report NUREG/CR-2896, Vol. I.

    Google Scholar 

  • Singhal, A. K., Keeton, L. W. Spalding, D. B., and Srikantiah, G. S.: 1982, ‘Athos-A Computer Program for Thermal-Hydraulic Analysis of Steam Generators. Vol. 1: Mathematical and Physical Models and Methods of Solution’, Electric Power Research Institute, California, Report EPRI NP-2698-CCM.

    Google Scholar 

  • Smith, R. B.: 1979, ‘The Influence of Mountains on the Atmosphere’, Adv. Geophys. 21, 87–230.

    Google Scholar 

  • Soo, S. L.: 1967. Fluid Dynamics of Multiphase Systems, Blaisdell Publishing Company.

  • Tripoli, G. J. and Cotton, W. R.: 1981, ‘The Use of Ice-Liquid Liquid Water Potential Temperature as a Thermodynamic Variable in Deep Atmospheric Models’, Mon. Weather Rev. 109, 1094–1102.

    Google Scholar 

  • Wulff, W.: 1990, ‘Computational Methods for Multiphase Flow’, in: Hewitt, G. F., Delhaye, J. M., and Zuber, N. (eds.). Multiphase Science and Technology, Vol. 5, Hemisphere Publishing Corporation, pp. 85–238.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Housiadas, C., Amanatidis, G.T. & Bartzis, J.G. Prediction of orographic precipitation using cartesian coordinates and a single prognostic equation for the water substance. Boundary-Layer Meteorol 56, 245–260 (1991). https://doi.org/10.1007/BF00120422

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120422

Keywords

Navigation