Skip to main content
Log in

Similarity studies of entrainment in convective mixed layers

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A similarity study of entrainment at the top of convectively driven mixed layer is presented. The similarity framework is used for a comparison between various parameterized models of mixed-layer growth rate and between closely related models for the ratio of heat fluxes at ground and inversion levels. These various models are also tested, in dimensionless form, against data from laboratory, field experiments and numerical higher-order-modeling of the convective layer. It is concluded that a rather accurate prediction of mixed-layer growth can be achieved with the simple constant flux ratio model, but that more refined studies of entrainment are required to account for the decrease of the heat flux ratio with increasing convective intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CRPE:

Centre de Recherches en Physique de l'Environnement, Issy-les-Moulineaux, France

EERM:

Etablissement d'Etudes et de Recherches Météorologiques, Boulogne, France

INRA:

Institut National de la Recherche Agronomique, Versailles, France

LAMP:

Laboratoire Associé de Météorologie Physique, Clermont-Ferrand, France

NCAR:

National Center for Atmospheric Research, Boulder, U.S.A.

NOAA:

National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Boulder, U.S.A.

References

  • André, J. C. and Artaz, M. A.: 1980, ‘Paramétrisation du Profil de la Variance de Températuure Dans une Couche Limite Convective’, C.R. Acad. Sci. Paris, in press.

  • André, J. C., De Moor, G., Lacarrère, P., and du Vachat, R.: 1976b, Turbulence Approximation for Inhomogeneous Flows. Part II: The Numerical Simulation of a Penetrative Convection Experiment’, J. Atmos. Sci. 33, 482–491.

    Google Scholar 

  • André, J. C., De Moor, G., Lacarrère, P., Therry, G., and du Vachat, R.: 1978, ‘Modeling the 24-hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • André, J. C., Lacarrère, P., and Mahrt, L. J.: 1979, ‘Sur la Distribution Verticale de l'Humidité Dans une Couche Limite Convective’, J. Rech. Atmos. 13, 135–146.

    Google Scholar 

  • Ball, F. K.: 1960, ‘Control of the Inversion Height by Surface Heating’, Quart. J. Roy. Meteorol. Soc. 86, 483–494.

    Google Scholar 

  • Betts, A. K.: 1973, ‘Non Precipitating Cumulus Convection and its Parameterization’, Quart. J. Roy. Meteorol. Soc. 99, 178–196.

    Google Scholar 

  • Brown, R. A.: 1978, ‘Similarity Parameters from First-Order Closure and Data’, Boundary-Layer Meteorol. 14, 381–396.

    Google Scholar 

  • Carson, D. J.: 1973, ‘The Development of a Dry Inversion Capped Convectively Unstable Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 450–467.

    Google Scholar 

  • Cattle, H. and Weston, K. J.: 1975, ‘Budget Studies of the Heat Flux Profiles in the Convective Boundary Layer Over Land’, Quart. J. Roy. Meteorol. Soc. 101, 353–363.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brooke, R. R., Reid, D. G., and Troup, A. J.: 1971, The Wangara experiment. Boundary-layer data, Paper No. 19, Division of Meteorological Physics CSIRO, Australia.

    Google Scholar 

  • Deardorff, J. W.: 1970, ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection’, J. Atmos. Sci. 27, 1211–1213.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for Use in General Circulation Models’, Mon. Wea. Rev. 100, 93–106.

    Google Scholar 

  • Deardorff, J. W.: 1974a, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Deardorff, J. W.: 1974b, ‘Three-Dimensional Numerical Study of Turbulence in an Entraining Mixed Layer’, Boundary-Layer Meteorol. 7, 199–226.

    Google Scholar 

  • Deardorff, J. W.: 1979, ‘Prediction of Convective Mixed Layer Entrainment for Realistic Capping Inversion Structure’, J. Atmos. Sci. 36, 424–436.

    Google Scholar 

  • Deardorff, J. W., Willis, G. E. and Lilly, D. K.: 1969, ‘Laboratory Investigation of Non Steady Penetrative Convection’, J. Fluid Mech. 35, 7–31.

    Google Scholar 

  • Dubosclard, G.: 1980, ‘Comparison Between observed and Predicted Values for the Entrainment Coefficient in the Planetary Boundary Layer’, Boundary-Layer Meteorol. 18, 473–483.

    Google Scholar 

  • Farmer, D. M.: 1975, ‘Penetrative Convection in the Absence of Mean Shear’, Quart. J. Roy. Meteorol. Soc. 101, 869–891.

    Google Scholar 

  • Heidt, F. D.: 1977, ‘The Growth of the Mixed Layer in a Stratified Fluid Due to Penetrative Convection’, Boundary-Layer Meteorol. 12, 439–461.

    Google Scholar 

  • Jouvenaux, S.: 1978, ‘Etude Expérimentale de la Structure Turbulente de la Couche de Mélange Convective’ Thèse de 3ème Cycle, Université de Clermont-Ferrand II, 125 pp.

  • Kitaygorodskiy, S. A. and Kozhelupova, N. G.: 1978, ‘Entrainment Rate in the Penetrative Convection Regime in Unsteady-State Boundary Layers of the Atmosphere and the Ocean’, Izv. Atmos. Ocean. Phys. 14, 453–458.

    Google Scholar 

  • Lenschow, D. H. and Agee, E. M.: 1976, ‘Preliminary Results for the Air Mass Transformation Experiment (AMTEX), Bull. Amer. Meteorol. Soc. 57, 1346–1355.

    Google Scholar 

  • Lewellen, W. S. and Teske, M.: 1973, ‘Prediction of the Monin-Obukhov Similarity Functions from an Invariant Model of Turbulence’, J. Atmos. Sci. 30, 1340–1345.

    Google Scholar 

  • Lilly, D. K.: 1968, ‘Models of Cloud-Topped Mixed Layers Under a Strong Inversion’, Quart. J. Roy. Meteorol. Soc. 94, 292–309.

    Google Scholar 

  • Mahrt, L. J.: 1979, ‘Penetrative Convection at the Top of a Growing Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 105, 469–485.

    Google Scholar 

  • Mahrt, L. J.: 1980, ‘Pressure Effects at the Mixed Layer Top’, J. Atmos. Sci. to appear.

  • Marht, L. J. and Lenschow, D. H.: 1976, ‘Growth Dynamics of the Convective Mixed Layer’, J. Atmos. Sci. 33, 41–51.

    Google Scholar 

  • Pielke, R. A. and Mahrer, Y.: 1975, ‘Representation of the Heated Planetary Boundary Layer in Mesoscale Models with Coarse Resolution’, J. Atmos. Sci. 32, 2288–2308.

    Google Scholar 

  • Rosset R.: 1975, ‘Mécanismes, Rôle et Paramétrisation de l'Entraînement au Sommet de la Couche Limite Planétaire Convective’, Thèse de Doctorat d'Etat, Université de Clermont-Ferrand, 131 pp.

  • Sommeria, G.: 1976, ‘Three-Dimensional Simulation of Turbulent Processes in an Undisturbed Trade Wind Boundary Layer’, J. Atmos. Sci. 33, 216–241.

    Google Scholar 

  • Stull, R. B.: 1973, ‘Inversion Rise Model Based on Penetrative Convection’, J. Atmos. Sci. 30, 1092–1099.

    Google Scholar 

  • Stull, R. B.: 1976a, ‘The Energetics of Entrainment Across a Density Interface’, J. Atmos. Sci. 33, 1260–1267.

    Google Scholar 

  • Stull, R. B.: 1976b, ‘Mixed-layer Depth Model Based on Turbulent Energetics’, J. Atmos. Sci. 33, 1268–1278.

    Google Scholar 

  • Sun, W. Y. and Ogura, Y.: 1980, ‘Modeling the Evolution of the Convective Planetary Boundary Layer’, J. Atmos. Sci. to appear.

  • Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion Above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.

    Google Scholar 

  • Tennekes, H.: 1975, ‘Reply to Comments by S. S. Zilitinkevich’, J. Atmos. Sci. 32, 992–995.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31, 1297–1307.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1974, ‘The Evolution of a Convective Planetary Boundary Layer. A Higher-Order-Closure Model Study’, Boundary-Layer Meteorol. 7, 289–304.

    Google Scholar 

  • Wyngaard, J. C., Pennell, W. T., Lenschow, D. H., and Le Mone, M. A.: 1978, ‘The Temperature-Humidity Covariance Budget in the Convective Boundary Layer’, J. Atmos. Sci. 35, 47–58.

    Google Scholar 

  • Yamada, T. and Mellor, G.: 1975, ‘A Simulation of the Wangara Atmospheric Boundary Layer Data’, J. Atmos. Sci. 32, 2309–2329.

    Google Scholar 

  • Yamatoto, S., Gamo, M., and Yokoyama, O.: 1977, ‘Airborne Measurements of Turbulent Heat Flux’, J. Meteorol. Soc. Japan, 55, 533–545.

    Google Scholar 

  • Zeman, O.: 1975, ‘The Dynamics of Entrainment in Planetary Boundary Layers: A Study in Turbulence Modeling and Parameterization’, Ph.D. Thesis, Pennsylvania State University, U.S.A.

    Google Scholar 

  • Zeman, O. and Tennekes, H.: 1977, Parameterization of the Turbulent Energy Budget at the Top of the Daytime Atmospheric Boundary Layer’, J. Atmos, Sci. 34, 111–123.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Comments on “A Model for the Dynamics of the Inversion Above a Convective Boundary Layer”’, J. Atmos. Sci. 32, 991–992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artaz, MA., Andre, JC. Similarity studies of entrainment in convective mixed layers. Boundary-Layer Meteorol 19, 51–66 (1980). https://doi.org/10.1007/BF00120310

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120310

Keywords

Navigation