Skip to main content
Log in

Fluid mechanical aspects of the pollutant transport to coniferous trees

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Forest decline in some parts of Europe gave rise to various environmental studies concerning the intake and uptake of pollutants in the ecosphere. As far as fluid mechanics is concerned, the current interest is centered on flow-induced phenomena, e.g., the flow-enhanced deposition of pollutants to trees. In order to understand better the mechanisms of pollutant dispersion and deposition to trees, wind tunnel experiments carried out with small real coniferous trees and model trees are summarized in this paper. The flow around single trees and tree stands, both in flat terrain and on hillsides, has been analysed. The measurements were performed with a two-component laser Doppler anemometer system installed in an atmospheric boundary-layer wind tunnel. A chemical tracer method based on an ammonia-manganese chloride reaction was applied to visualize the deposition patterns around trees and modeled forest stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiro, B. D.: 1990, ‘Comparison of Turbulence Statistics Within Three Boreal Forest Canopies’, Boundary-Layer Meteorol. 51, 99–121.

    Google Scholar 

  • Antonia, R. A. and Luxton, R. E.: 1971, ‘The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness, Part 1, Smooth to Rough’, J. Fl. Mech. 48(4), 721–761.

    Google Scholar 

  • Armitt, J. and Counihan, J.: 1968, ‘The Simulation of the Atmospheric Boundary Layer in a Wind Tunnel’, Atmosph. Envir. 2, 49–71.

    Google Scholar 

  • Baines, P. G.: 1984, ‘A Unified Description of Two-Layer Flow over Topography’, J. Fluid Mech. 146, 127–167.

    Google Scholar 

  • Barr, S.: 1971, ‘A Modeling Study of Several Aspects of Canopy Flow’, Mon. Weather Rev., Washington DC, 99(6), 485–493.

    Google Scholar 

  • Baynton, H. W., Biggs, W. G., Hamilton Jr., H. L., Sherr, P. E., and Worth, J. J. B.: 1965, ‘Wind Structure in and above a Tropical Forest’, J. Appl. Meteorol. 4, 670–675.

    Google Scholar 

  • Beiser, L.: 1974, ‘Laser Scanning Systems’, in Laser Application, Academic Press, New York, 2.

  • Belot, Y.: 1976, Etude de la Captation des Pollutants Atmosphérique par les Végétaux, Centre à L'Energie Atomique (CEN), Fonteney aux Roses, France.

    Google Scholar 

  • Bergström, H. and Högström, U.: 1989, ‘Turbulent Exchange Above a Pine Forest II. Organized Structures’, Boundary-Layer Meteorol. 49, 231–263.

    Google Scholar 

  • Britter, R. E., Hunt, J. C. R., and Richards, K. J.: 1981, ‘Air Flow over a Two-Dimensional Hill: Studies of Velocity Speed-Up, Roughness Effects and Turbulence’, Quart. J. Royal Meteorol. Soc. 107, 91–110.

    Google Scholar 

  • Calder: 1961, ‘Atmospheric Diffusion of Particulate Material, Considered as a Boundary Value Problem’, J. Meteorol. 18, 413–416.

    Google Scholar 

  • Cermak, J. E.: 1971, ‘Laboratory Simulation of the Atmospheric Boundary Layer’, AIAA Journal 9(9), 1746–1754.

    Google Scholar 

  • Chamberlain, A. C.: 1953, ‘Aspects of Travel and Deposition of Aerosols and Vapour Clouds’, A.E.R.E. HP/R 1261.

  • Chamberlain, A. C.: 1967, ‘Transport of Lycododium Spores and Other Small Particles to Rough Surfaces’, Proc. Roy. Soc. Lond., Ser. A, 296, 45–70.

    Google Scholar 

  • Chamberlain, A. C.: 1975, ‘The Movement of Particles in Plant Communities’, in Vegetation and the Atmosphere, J. L. Monteith (ed.), Academic Press, 1, 155–203.

  • Cionco, R. M.: 1965, ‘A Mathematical Model for Air Flow in a Vegetative Canopy’, J. Appl. Meteorol. 8(4), 517–522.

    Google Scholar 

  • Cionco, R. M.: 1985, ‘Modeling Windfields and Surface Layer Wind Profiles over Complex Terrain and Within Vegetative Canopies’, in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publishing Co., Dordrecht, Holland, pp. 501–520.

    Google Scholar 

  • Counihan, J.: 1969, ‘An Improved Method of Simulating an Atmospheric Boundary Layer in a Wind Tunnel’, Atmos. Envir. 3, 197–214.

    Google Scholar 

  • Cowan, I. R.: 1968, ‘Mass, Heat and Momentum Exchange Between Stands of Plants and their Atmospheric Environment’, Q. J. Roy. Meteorol. Soc. 94, 310–332.

    Google Scholar 

  • Drain, L. E.: 1980, The Laser Doppler Technique, Wiley Interscience Publication, John Wiley & Sons, Chichester.

    Google Scholar 

  • Durst, F., Melling, A., and Whitelaw, J. H.: 1976, Principles and Practice of Laser-Doppler Anemometry, Academic Press, London.

    Google Scholar 

  • Ekstrom: 1984, Digital Image Processing Techniques, Academic Press, New York.

    Google Scholar 

  • Emeis, S.: 1987, ‘Pressure Drag and Effective Roughness Length with Neutral Stratification’, Boundary-Layer Meteorol. 39, 3.

    Google Scholar 

  • Finnigan, J. J.: 1985, ‘Turbulent Transport in Flexible Plant Canopies’, in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publ. Co., Doredrecht, Holland, pp. 443–480.

    Google Scholar 

  • Freidlander, S. K. and Johnstone, H. F.: 1957: ‘Deposition of Suspended Particles from Turbulent Gas Streams’, Indust. Eng. Chem. 49(7), 1151–1156.

    Google Scholar 

  • Garland, J. A. and Branson, J. R.: 1977, ‘The Deposition of Sulphur Dioxide to Pine Forest Assessed by a Radioactive Tracer Method’, Tellus 29, 445–454.

    Google Scholar 

  • Haberäcker, P.: 1985, Digitale Bildverarbeitung: Grundlagen und Anwendungen, Carl Hanser Verlag, Wien.

    Google Scholar 

  • Hager, H. and Kazda, M.: 1985, ‘The Influence of Stand Density and Canopy Position on Sulfor Content Needles of Norway Spruce (Picea Abies L. Karst)’, Water, Air, Soil Poll. 25, 321–329.

    Google Scholar 

  • Häuf, T. and Neumann-Hauf, G.: 1981, ‘The Turbulent Wind Flow over an Embankment’, Boundary-Layer Meteorol. 24, 357–369.

    Google Scholar 

  • Högström, U., Bergström, H., Smedman, A., Halldin, S., and Lindroth, A.: 1989, ‘Turbulent Exchange Above a Pine Forest I: Fluxes and Gradients’, Boundary-Layer Meteorol. 42, 231–263.

    Google Scholar 

  • Inoue, E.: 1963, ‘On the Turbulent Structure of Airflow Within Crop Canopies’, J. Meteorol. Soc. of Japan 41(6), 317–325.

    Google Scholar 

  • Jackson, P. S. and Hunt, J. C. R.: 1975, ‘Turbulent Wind Flow over a Low Hill’, Quart. J. Royal Meteorol. Soc. 101, 929–955.

    Google Scholar 

  • Kottke, V., Blenke, H. and Schmidt, K. G.: 1977. ‘Eine remissionsfotometrische Meβmethode zur Bestimmung örtlicher Stoffübertragungskoeffizienten bei Zwangskonvektion in Luft’, Wärme- und Stoffübertragung 10, 9–21.

    Google Scholar 

  • Lewellen, W. S.: 1985, ‘Modeling Turbulent Exchange in Forest Canopies’, in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publ. Co., Dordrecht, Holland, pp. 481–499.

    Google Scholar 

  • Li, Z., Lin, J. D., and Miller, D. R.: 1990, ‘Air Flow Over and Through a Forest Edge: A Steady-State Numerical Simulation’, Boundary-Layer Meteorol. 51, 179–197.

    Google Scholar 

  • Lin, C. S., Moulton, R. W., and Putnam, G. L.: 1953, ‘Mass Transfer Between Solid Wall and Fluid Streams’, Industr. Eng. Chem. 45, 667.

    Google Scholar 

  • Little, P. and Wiffen, R. D.: 1977, ‘Emission and Deposition of Petrol Engine Exhaust Pb-I. Deposition of Exhaust Pb to Plant and Soil Surfaces’, Atm. Environ. 11, 437–447.

    Google Scholar 

  • Lorenz, R. and Murphy Jr., C. E.: 1985, ‘The Dry Deposition of Sulfur Dioxide on a Loblolly Pine Plantation’, Atm. Envir. 19(5), 797–802.

    Google Scholar 

  • McMahon, T. A. and Denison, P. J.: 1979, ‘Empirical Atmospheric Deposition Parameters — A Survey’, Atm. Envir. 13, 571–585.

    Google Scholar 

  • Meroney, R. N.: 1968, ‘Characteristics of Wind and Turbulence in and above Model Forests’, J. Appl. Meteorol. 7, 780–788.

    Google Scholar 

  • Neal, D., Stevenson, D. C. and Lindley, D.: 1981, ‘A Wind Tunnel Boundary-Layer Simulation of Wind Flow over Complex Terrain: Effect of Terrain and Model Construction’, Boundary-Layer Meteorol. 21, 271–293.

    Google Scholar 

  • Pearse, J. R., Lindley, D. and Stevenson, D. C.: 1981, ‘Wind Flow over Ridges in Simulated Atmospheric Boundary Layers’, Boundary-Layer Meteorol. 21, 77–92.

    Google Scholar 

  • Pendergrass, W. and Arya, S. P. S.: 1984, ‘Dispersion in Neutral Boundary Layer over a Step Change in Surface Roughness - I. Mean Flow and Turbulence Structure’, Atmos. Envir. 18(7), 1267–1279.

    Google Scholar 

  • Plate, E. J. and Quraishi, A. A.: 1965, ‘Modeling of Velocity Distributions Inside and Above Tall Crops’, J. Appl. Meteorol. 4, 400–408.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, ‘Turbulence in and above Plant Canopies’, Ann. Rev. Fluid Mech. 13, 97–129.

    Google Scholar 

  • Rehfuβ, K. E.: 1983, Allg. Forstzeitschrift 26/27, 640.

    Google Scholar 

  • Reichardt, H.: 1956, ‘Über die Geschwindigkeitsverteilung in einer geradlinigen turbulenten Couette Strömung’, Zeitschrift für Angewandte Mathematik und Mechanik 36, 26–29.

    Google Scholar 

  • Reifsnyder, W.: 1955, ‘Wind Profiles in a Small Isolated Forest Stand’, Forest/Science, Washington D.C., 1, 289–297.

    Google Scholar 

  • Rotta, J. C.: 1972, Turbulente Strömungen, B. G. Teubner, Stuttgart.

    Google Scholar 

  • Rouhiainen, P. O. and Stachiewicz, J. W.: 1970, ‘On the Deposition of Small Particles from Turbulent Streams’, J. Heat Transf. 169–177.

  • Ruck, B.: 1987, ‘Flow Characteristics Around Coniferous Trees’, Proc. of the Second International Conference on Laser Anemometry, Glasgow, Scotland, pp. 131–139.

  • Ruck, B.: 1987, Laser-Doppler-Anemometrie, Fachbuch, AT-Fachverlag Stuttgart.

    Google Scholar 

  • Ruck, B.: 1990, ‘Laserlichtschnittverfahren und digitale Videobildverarbeitung’, in B. Ruck (ed.), Lasermethoden in der Strömungsmeβtechnik, AT-Fachverlag Stuttgart, 10, 367–402.

    Google Scholar 

  • Ruck, B. (Hrsg.): 1990, Lasermethoden in der Strömungsmeβtechnik, Fachbuch, AT-Fachverlag Stuttgart.

    Google Scholar 

  • Ruck, B. and Schmitt, F.: 1986, Das Strömungsfeld der Einzelbaumumströmung, Abschätzung von Depositionswahrscheintichkeiten für Feinsttröpfchen, Forstwissenschaftliches Centralblatt, 105/86, 3, 178–196.

    Google Scholar 

  • Saito, T., Nagai, Y., Isobe, S. and Horibe, Y.: 1970, ‘An Investigation of Turbulence Within a Crop Canopy’, J. Agric. Neteorol., Tokyo 25, 205–214.

    Google Scholar 

  • Schmitt, F. and Ruck, B.: 1986, ‘Laserlichtschnittverfahren zur qualitativen Strömungsanalyse’, Laser und Optoelektronik 2, 107–118.

    Google Scholar 

  • Schöpfer, W. and Hradetzky, J.: 1985, ‘Luftschadstoffe maβgebliche Ursache der Walderkrankung -Eine weitere Untermauerung des ‘Indizienbeweises’’, Der Forst- und Holzwirt 40(8), 211–220.

    Google Scholar 

  • Schütt, P.: 1980, Holz-Zentralblatt 107, 159.

    Google Scholar 

  • Seginer, I., Mulhearn, P. J., Bradley, E. F. and Finnigan, J. J.: 1976, ‘Turbulent Flow in a Model Plant Canopy’, Boundary-Layer Meteorol. 10, 423–453.

    Google Scholar 

  • Sehmel, G. A.: 1980, ‘Particle and Gas Dry Deposition: A Review’, Atmos. Environ. 14, 983–1011.

    Google Scholar 

  • Shreffler, J. H.: 1978, Atm. Envir. 12, 1497.

    Google Scholar 

  • Smith, F. B. and Carson, D. J.: 1972, ‘Mean Wind-Direction Shear Through a Forest Canopy’, Boundary-Layer Meteorol. 3, 178–190.

    Google Scholar 

  • Snyder, W. H., Thomson, R. S., Askridge, R. E., Lawson, R. E., Castro, I. P., Lee, J. T., Hunt, J. C. R. and Ogawa, Y.: 1985, ‘The Structure of Strongly Stratified Flow over Hills: Dividing Streamline Concept’, J. Fl. Mech. 153, 249–288.

    Google Scholar 

  • Tani, I.: 1968, In AFOSR-IFP Conf., on Computation of Turbulent Boundary Layers, Stanford University.

  • Thom, A. S.: 1971, ‘Momentum Absorption by Vegetation’, Quart. J. R. Meteorol. 97, 414–428.

    Google Scholar 

  • Thom, A. S.: 1975, ‘Momentum, Mass and Heat Exchange of Plant Communities’, Vegetation and the Atmosphere 1, 887–890.

    Google Scholar 

  • Thompson, R. S. and Snyder, W. H.: 1985, ‘Air Pollution and Terrain Aerodynamics: A Review of Fluid Modeling at the EPA Fluid Modeling Facility’, J. Wind Eng. Ind. Aero. 21, 1–19.

    Google Scholar 

  • Trela, M., Zembik, J. and Durkiewicz, B.: 1982, ‘Droplet Deposition on a Flat Plate from an Air/Water Turbulent Mist Flow’, Int. J. Multiphase Flow 8(3), 227–238.

    Google Scholar 

  • Uchijima, Z.: 1962, ‘Studies on the Microclimate Within the Plant Communities, (2) The Scale of Turbulence and the Momentum Transfer Within Plant Layers’, J. Agric. Meteorol. (Tokyo), 18, 58–65.

    Google Scholar 

  • Wood, D. H.: 1982, ‘Internal Layer Growth Following a Step Change in Surface Roughness’, Boundary-Layer Meteorol. 22, 241–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruck, B., Adams, E. Fluid mechanical aspects of the pollutant transport to coniferous trees. Boundary-Layer Meteorol 56, 163–195 (1991). https://doi.org/10.1007/BF00119966

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119966

Keywords

Navigation