Skip to main content
Log in

The nocturnal boundary layer during the passage of a mesoscale fog front

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The structure of the nocturnal boundary layer affected by an advected fog mass is investigated. For this, measurements of the horizontal wind vector, the temperature, relative humidity and horizontal visibility performed on a radio mast 300 m high are used together with a monostatic SODAR recording.

The shape of the cold fog mass, which roughly resembles that of a density current, is described by the shallow water equations in a first approximation. Ahead of the leading edge of the fog mass, a stream function analysis suggests an upward flow component. In addition, a local circulation pattern exists at the density interface. After the fog front has passed the measuring site, the boundary-layer flow becomes more turbulent and, from the hydrodynamical point of view, critical. In agreement with this, the friction velocity inside the growing fog mass increases with time, as shown by a simple integral method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, F. K.: 1956, ‘The Theory of Strong Katabatic Winds’, Austr. J. Phys. 9, 373–386.

    Google Scholar 

  • Benjamin, T. B.: 1968, ‘Gravity Currents and Related Phenomena’, J. Fluid Mech. 31, 209–248.

    Google Scholar 

  • Blackadar, A. K.: 1957, ‘Boundary-Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions’, Bull. Amer. Meteorol. Soc. 38, 283–290.

    Google Scholar 

  • Blumen, W.: 1984, ‘An Observational Study of Instability and Turbulence in Nighttime Drainage Winds’, Boundary-Layer Meteorology 28, 245–269.

    Google Scholar 

  • Charba, J.: 1974, ‘Application of a Gravity Current Model to Analysis of a Squall-Line Gust Front’, Mon. Wea. Rev. 102, 140–156.

    Google Scholar 

  • Droegmemeier, K. K. and Wilhelmson, R. B.: 1987, ‘Numerical Simulation of Thunderstorm Outflow Dynamics. Part I: Outflow Sensitivity Experiments and Turbulence Dynamics’, J. Atmos. Sci. 44, 1180–1210.

    Google Scholar 

  • Garratt, J. R. and Physick, W. L.: 1986, ‘Numerical Study of Atmospheric Gravity Currents. I: Simulations and Observations of Cold Fronts’, Beitr. Phys. Atmosph. 59, 282–300.

    Google Scholar 

  • Han, Y.-J., Ueyoshi, K., and Deardorff, J. W.: 1982, ‘Numerical Study of Terrain-Induced Mesoscale Motions in a Mixed Layer’, J. Atmos. Sci. 39, 2464–2476.

    Google Scholar 

  • Jiusto, J. E.: 1974, ‘Remarks on Visibility in Fog’, J. Appl. Meteor. 13, 608–610.

    Google Scholar 

  • Jiusto, J. E. and Lala, G. G.: 1980, ‘Radiation Fog Formation and Dissipation. A Case Study’, J. Rech. Atmos. 14, 391–397.

    Google Scholar 

  • Kottmeier, Chr., Lege, D., and Roth, R.: 1980, ‘Ein Meβsystem zur Sondierung der planetarischen Grenzschicht’, Meteorol. Rdsch. 33, 9–13.

    Google Scholar 

  • Koschmieder, H.: 1936, ‘Danziger Seewindstudien I’, Forschungsarbeiten d. Meteorol. Inst. Danzig 8.

  • Kraus, H.: 1958, ‘Untersuchungen über den nächtlichen Energietransport und Energiehaushalt in der bodennahen Luftschicht bei Bildung von Stahlungsnebel’, Berichte des Deutschen Wetterdienstes 7, No. 48, 1–25.

    Google Scholar 

  • Lettau, H. and Davidson, B.: 1957, Exploring the Atmosphere's First Mile, 2 Vols., Pergamon Press, New York and London.

    Google Scholar 

  • Mahrt, L. and Larsen, S.: 1982, ‘Small Scale Drainage Front’, Tellus 34, 579–587.

    Google Scholar 

  • Manins, P. C. and Sawford, B. L.: 1979, ‘Katabatic Winds: A Field Case Study’, Quart. J. R. Met. Soc. 105, 1011–1025.

    Google Scholar 

  • Meyer, M. B., Lala, G. G., and Fitzjarrald, D. R.: 1985, ‘Tethered Balloon Soundings during Fog Evolution’, 2nd Intern. Conf. Aviation Weather System, Montreal, Amer. Meteor. Soc., 90–93.

    Google Scholar 

  • Mueller, C. K. and Carbone, R. E.: 1987, ‘Dynamics of a Thunderstorm Outflow’, J. Atmos. Sci. 44, 1879–1898.

    Google Scholar 

  • Pietzner, B., Surkow, R., and Roth, R.: 1985, ‘Ein Meβsystem zur Erfassung der Vertikalstruktur der Horizontalsicht zwischen 2 m und 300 m Höhe’, Meteorol. Rdsch. 38, 156–159.

    Google Scholar 

  • Pietzner, B.: 1986, ‘Die Vertikalstruktur der Horizontalsicht im Höhenbereich bis 300 m über Grund in Norddeutschland’, Berichte d. Inst. f. Meteorol. u. Klimat. 26, Univ. Hannover.

  • Roach, W. T., Brown, R., Caughey, S. J., Garland, J. A., and Readings, C. J.: 1976, ‘The Physics of Radiation Fog: I - A Field Study’, Quart. J. R. Met. Soc. 102, 313–333.

    Google Scholar 

  • Roth, R., Wittich, K.-P., and Falke, M.: 1989, ‘Eine Fallstudie zu einem nächtlichen Windfeld oberhalb der Reibungsschicht bei inhomogenem und instationärem geostrophischen Wind’, Meteorol. Rdsch. 41, 129–136.

    Google Scholar 

  • Shapiro, M. A.: 1984, ‘Meteorological Tower Measurements of a Surface Cold Front’, Mon. Wea. Rev. 112, 1634–1639.

    Google Scholar 

  • Simpson, J. E.: 1972, ‘Effects of the Lower Boundary on the Head of a Gravity Current’, J. Fluid Mech. 53, 759–768.

    Google Scholar 

  • Simpson, J. E., Mansfield, D. A., and Milford, J. R.: 1977, ‘Inland Penetration of Sea-Breeze Fronts’, Quart. J. R. Met. Soc. 103, 47–76.

    Google Scholar 

  • Simpson, J. E. and Britter, R. E.: 1980, ‘A Laboratory Model of an Atmospheric Mesofront’, Quart. J. R. Met. Soc. 106, 485–500.

    Google Scholar 

  • Smith, R. K. and Reeder, M. J.: 1988, ‘On the Movement and Low-Level Structure of Cold Fronts’, Mon. Wea. Rev. 116, 1927–1944.

    Google Scholar 

  • Stoker, J. J.: 1957, Water Waves, Interscience Publ., New York.

    Google Scholar 

  • Stull, R. B.: 1976, ‘The Energetics of Entrainment Across a Density Interface’, J. Atmos. Sci. 33, 1260–1267.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary-Layer Meteorology, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Ungewitter, G.: 1984, ‘Zur Vorhersage von Nebeleinbrüchen im Alpenvorland - Theoretische überlegungen und praktische Anwendungen zur thermischen Zirkulation zwischen einem Nebelgebiet und seiner Umgebung’, Meteorol. Rdsch. 37, 138–145.

    Google Scholar 

  • von Karman, Th.: 1940, ‘The Engineer Grapples with Nonlinear Problems’, Bull. Amer. Math. Soc. 46, 615–683.

    Google Scholar 

  • Wippermann, F.: 1973, ‘Numerical Study on the Effects Controlling the Low-Level Jet’, Beitr. Phys. Atmos. 46, 137–154.

    Google Scholar 

  • Wittich, K.-P.: 1988, ‘Fallstudient mesoskaliger Strukturen in der nächtlichen planetaren Grenzschicht über Norddeutschland’, Berichte d. Inst. f. Meteorol. u. Klimat. 36, Univ. Hannover.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittich, K.P. The nocturnal boundary layer during the passage of a mesoscale fog front. Boundary-Layer Meteorol 51, 365–382 (1990). https://doi.org/10.1007/BF00119674

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119674

Keywords

Navigation