Skip to main content
Log in

Numerical simulation of the development of the convective boundary layer during a cold air outbreak

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

During cold air outbreaks, cold and stably stratified air masses are advected from land or ice surfaces over a warmer sea surface. Due to the heating from below, a convective boundary layer develops. For small fetches, convection is organized in the form of horizontal roll vortices, which at greater distances join in a zone with open or closed cells. The formation of the convective boundary layer, and the associated roll vortices, is simulated with a numerical model and results are compared with observations obtained during the MASEX experiment off the east coast of the United States. To validate the model, a comparison with a one-dimensional mixed-layer model is also made, with special attention given to the exact representation of the observed initial and boundary conditions. Comparisons between model results and observations show good qualitative and quantitative correspondence in mean temperature and heat flux profiles respectively at different distances from the coast. Maximum values of vertical velocity are well reproduced. Turbulent kinetic energy is found to be concentrated in the small updraft regions of the rolls, which is in accordance with observations from the MASEX-experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agee, E. M. and Howley, R. P.: 1977, ‘Latent and Sensible Heat Flux Calculations at Air-Sea Interface during AMTEX-74’, J. Atmos. Sci. 16, 443–447.

    Google Scholar 

  • Arakawa, A.: 1966, ‘Computational Design for Long-Term Numerical Integration of the Equation of Fluid Motion: Two-Dimensional Incompressible Flow’, J. Comp. Phys. 1, 119–143.

    Google Scholar 

  • Atlas, D., Walter, B., Chou, S.-H. and Sheu, P. J.: 1986, ‘The Structure of the Unstable Marine Boundary Layer Viewed by Lidar and Aircraft Observations’, J. Atmos. Sci. 43, 1301–1318.

    Google Scholar 

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulence Exchange in a Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Brown, R. A.: 1980, ‘Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer: A Review’, Rev. Geophys. Space Phys. 18, 683–697.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971. ‘Flux-Profile Relationship in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Charnock, H.: 1955, ‘Wind Stress on a Water Surface’, Q. J. R. Meteorol. Soc. 81, 639–640.

    Google Scholar 

  • Chlond, A.: 1988, ‘Numerical and Analytical Studies of Diabatic Heating Effect Upon Flatness of Boundary Layer Rolls’, Beitr. Phys. Atmosph. 61. 312–329.

    Google Scholar 

  • Chou, S.-H. and Atlas, D.: 1982. ‘Satellite Estimates of Ocean-Air Heat Fluxes during Cold Air Outbreaks’, Mon. Wea. Rev. 110, 1434–1450.

    Google Scholar 

  • Chou, S.-H., Atlas, D., and Yeh, E.-N.: 1986, ‘Turbulence in a Convective Marine Atmospheric Boundary Layer’, J. Atmos. Sci. 43, 547–564.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Deardorff, J. W.: 1976, ‘Discussion of ‘Thermals Over the Sea and Gull Flight Behaviour’ A. H. Woodcock’, Boundary-Layer Meteorol. 10, 241–246.

    Google Scholar 

  • Deardorff, J. W., Willis, G. E., and Stockton, B. H.: 1980. ‘Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer’, J. Fluid Mech. 100, 41–64.

    Google Scholar 

  • Etling, D. and Raasch, S.: 1987, ‘Numerical Simulation of Vortex Roll Development During a Cold Air Outbreak’, Dyn. Atmos. Oceans 10, 277–290.

    Google Scholar 

  • Garratt, J. R.: 1977, ‘Review of Drag Coefficients over Oceans and Continents’, Mon. Wea. Rev. 105, 915–929.

    Google Scholar 

  • Grossman, L. R.: 1982, ‘An Analysis of Vertical Velocity Spectra Obtained in the BOMEX Fair-Weather, Trade-Wind Boundary Layer’, Boundary-Layer Meteorol. 23, 323–357.

    Google Scholar 

  • Hein, P. F. and Brown, R. A.: 1988, ‘Observations of Longitudinal Roll Vortices During Arctic Cold Air Outbreaks over Open Water’, Boundary-Layer Meteorol. 45, 177–199.

    Google Scholar 

  • Hoeber, H. C. (ed.): 1982, ‘KonTur. Convection and Turbulence Experiment. Preliminary Scientific Results’, Hamburger Geophys. Einzelschriften, Reihe A 57.

  • Kantha, H. L. and Mellor, G. L.: 1989, ‘A Numerical Model of the Atmospheric Boundary Layer over a Marginal Ice Zone’, J. Geophy. Res. 94, 4959–4970.

    Google Scholar 

  • Küttner, J. P.: 1971, ‘Cloud Bands in the Atmosphere’, Tellus 23, 404–425.

    Google Scholar 

  • Kung, E. C. and Siegal, A. J.: 1979, ‘A Study of Heat and Moisture Budgets in the Intense Winter Monsoon over the Warm Ocean Current’, J. Atmos. Sci. 36, 1880–1894.

    Google Scholar 

  • Lapworth, A. J.: 1987. ‘Wind Profiles Through Boundary-Layer Capping Inversions’, Boundary-Layer Meteorol. 39, 333–378.

    Google Scholar 

  • LeMone, M. A.: 1973, ‘The Structure and Dynamics of Horizontal Roll Vortices in the Planetary Boundary Layer’, J. Atmos. Sci. 30, 1077–1091.

    Google Scholar 

  • LeMone, M. A.: 1976, ‘Modulation of Turbulence Energy of Longitudinal Rolls in an Unstable Planetary Boundary Layer’, J. Atmos. Sci. 33, 1308–1320.

    Google Scholar 

  • Lenshow, D. H.: 1970, ‘Aiplane Measurements of Planetary Boundary Layer Structure’, J. Appl. Meteorol. 9, 874–884.

    Google Scholar 

  • Mason, P. J.: 1983, ‘On the Influence of Variation in Monin-Obukhov Length on Horizontal Roll Vortices in an Inversion-Capped Planetary Boundary Layer’, Boundary-Layer Meteorol. 27, 43–68.

    Google Scholar 

  • Mason, P. J.: 1985, ‘A Numerical Study of Cloud Streets in the Planetary Boundary Layer’, Boundary-Layer Meteorol. 32, 281–304.

    Google Scholar 

  • Mason, P. J.: 1986, ‘Large-Eddy Simulations of the Planetary Boundary Layer’, comment in U. Schumann and R. Friedrich, (ed.), Direct and Large-Eddy Simulation of Turbulence, Notes on Numerical Fluid Mechanics, Vol. 15, Friedr. Vieweg & Sohn, Braunschweig, 329 pp.

    Google Scholar 

  • Mason, P. J.: 1989, ‘Large-Eddy Simulation of the Convective Atmospheric Boundary Layer’, J. Atmos. Sci. 46, 1492–1516.

    Google Scholar 

  • Mason, P. J. and Callen, N. S.: 1986, ‘On the Magnitude of the Subgrid-Scale Eddy Coefficient in Large-Eddy Simulations of Turbulent Channel Flow’, J. Fluid Mech. 162, 439–462.

    Google Scholar 

  • Mason, P. J. and Sykes, R. I.: 1980, ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in the Neutral Atmospheric Boundary Layer’, Q. J. R. Meteorol. Soc. 106, 351–366.

    Google Scholar 

  • Mason, P. J. and Sykes, R. I.: 1982, ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in an Inversion Capped Planetary Boundary Layer’, Q. J. R. Meteorol. Soc. 108, 801–823.

    Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1987, ‘Large-Eddy Simulations of the Neutral-Static-Stability Planetary Boundary Layer’, Q. J. R. Meteorol. Soc. 113, 413–443.

    Google Scholar 

  • Melfi, S. H., Spinhirne, J. D., Chou, S.-H., and Palm, S. P.: 1985, ‘Lidar Observations of Vertically Organized Convection in the Planetary Boundary Layer over the Ocean’, J. Climate Appl. Meteorol. 24, 806–821.

    Google Scholar 

  • Müller, D., Etling, D., Kottmeier, Ch., and Roth, R.: 1985, ‘On the Occurrence of Cloud Streets over Northern Germany’, Q. J. R. Meteorol. Soc. 111, 761–772.

    Google Scholar 

  • Raasch, S.: 1988, ‘Numerische Simulation zur Entwicklung von Wirbelrollen und konvektiver Grenzschicht bei Kaltluftausbrüchen Über dem Meer’, Diss., University of Hanover, 154 pp.

  • Schmidt, H. and Schumann, U.: 1989, ‘Coherent Structure of the Convective Boundary Layer Derived from Large-Eddy Simulations’, J. Fluid Mech. 200, 511–562.

    Google Scholar 

  • Scorer, R.: 1986, Cloud Investigation by Satellite, Ellis and Horwood Limited, Chichester, 300 pp.

    Google Scholar 

  • Sheu, P. J. and Agee, E. M.: 1977, ‘Kinematic Analysis and Air-Sea Heat Flux Associated with Mesoscale Cellular Convection during AMTEX 75’, J. Atmos. Sci. 34, 793–801.

    Google Scholar 

  • Stage, S. A.: 1979, ‘A Model for Modification of the Cloud-Topped Marine Boundary Layer during Cold Air Outbreak’, Diss., University of Washington, Seattle, 280 pp.

    Google Scholar 

  • Stage, S. A. and Businger, J. A.: 1981a, ‘A Model for Entrainment into a Cloud-Topped Marine Boundary Layer. Part 1: Model Description and Application to a Cold Air Outbreak Episode’, J. Atmos. Sci. 38, 2213–2229.

    Google Scholar 

  • Stage, S. A. and Businger, J. A.: 1981b, ‘A Model for Entrainment into a Cloud-Topped Marine Boundary Layer. Part II: Discussion of Model Behaviour and Comparison with other Models’, J. Atmos. Sci. 38, 2230–2242.

    Google Scholar 

  • Sun, W.-Y. and Hsu, W.-R.: 1986, ‘Numerical Simulation of Cold Air Outbreaks over AMTEX Region’, Proceedings of the International Conference on Monsoon and Mesoscale Meteorology, Taipei, 281–286.

  • Sykes, R. I., Lewellen, W. S., and Henn, D. S.: 1988, ‘A Numerical Study of the Development of Cloud-Street Spacing’, J. Atmos. Sci. 45, 2556–2569.

    Google Scholar 

  • Teske, M. E. and Lewellen, W. S.: 1979, ‘Horizontal Roll Vortices in the Planetary Boundary Layer’, Proc. 4th Sympos. Turbulence Diffusion, Am. Meteorol. Soc., Reno, pp. 456–463.

    Google Scholar 

  • Walter, B. A.: 1986, ‘The Mesoscale Organization, Dynamics and Evolution of the Marine Planetary Boundary Layer during Cold Air Outbreaks’, Diss., University of Washington, Seattle, 200 pp.

    Google Scholar 

  • Walter, B. A. and Overland, J. E.: 1984, ‘Observations of Longitudinal Rolls in a Near Neutral Atmosphere’, Mon. Wea. Rev. 112, 200–208.

    Google Scholar 

  • Wittich, K. P. and Roth, R.: 1984, ‘A Case Study of Nocturnal Wind and Temperature Profile over the Inhomogeneous Terrain of Northern Germany with some Considerations of Turbulent Fluxes’, Boundary-Layer Meteorol. 28, 169–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raasch, S. Numerical simulation of the development of the convective boundary layer during a cold air outbreak. Boundary-Layer Meteorol 52, 349–375 (1990). https://doi.org/10.1007/BF00119429

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119429

Keywords

Navigation