Skip to main content
Log in

Similarity of scalars under stable conditions

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The question whether two different scalars have the same behaviour in the surface layer under stable conditions is investigated. “Similarity” of two scalars is defined in terms of the equality of their corresponding dimensionless Monin-Obukhov similarity functions. Previous theoretical and experimental results concerning the issue are briefly reviewed: they are found to be contradictory. An analytical derivation of the square of the correlation coefficient between two scalars is obtained based on the correlation structure of the turbulent dissipation functions for stable conditions, when it can be assumed that the divergence of the vertical transport of scalar variance/covariance is negligible. The resulting expression elucidates some earlier conflicting results, and helps to establish the equality of the similarity functions for all scalars in the stable surface layer. A statistical analysis in the time domain is also performed using temperature and humidity turbulence data measured in nocturnal stable conditions during FIFE-89. Our results, both from the analytical derivation and the statistical analysis of turbulence data, confirm that under validity of the Monin-Obukhov similarity theory assumptions, the corresponding similarity functions for temperature and humidity are equal to within the statistical uncertainty of the measurements. An important consequence is that the eddy diffusivities of temperature and humidity are also equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benjamin, J. R. and Cornell, C. A.: 1970, Probability, Statistics and Decision for Civil Engineers, McGraw-Hill.

  • Bertela, M.: 1989, ‘Inconsistent Flux Partitioning by the Bowen Ratio Method’, Boundary-Layer Meteorol. 49, 149–167.

    Google Scholar 

  • Bradley, E. F., Antonia, R. A., and Chambers, A. J.: 1981, ‘Temperature Structure in the Atmospheric Surface Layer. I — The Budget of Temperature Variance’, Boundary-Layer Meteorol. 20, 275–292.

    Google Scholar 

  • Brost, R. A.: 1979, ‘Some Comments on the “Turbulent Exchange Coefficients for Sensible Heat and Water vapour Under Advective Conditions”’, J. Appl. Meteorol. 18, 378–380.

    Google Scholar 

  • De Bruin, H. A. R., Bink, N. J., and Kroon, L. J. M.: 1991, ‘Fluxes in the Surface Layer under Advective Conditions’, in Schmugge and Andre (eds.), Land Surface Evaporation. Measurments and Parameterization, pp. 151–171.

  • De Bruin, H. A. R., Kohsiek, W., and Van der Hurk, B. J. J. M.: 1993, ‘A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat and Water vapour using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities’, Boundary-Layer Meteorol. 63, 231–257.

    Google Scholar 

  • Dias, N. L.: 1994, The Structure of Temperature and Humidity Fluctuations in the Stable Surface Layer, Ph.D. Thesis, Cornell University.

  • Dias, N. L., Brutsaert, W., and Wesely, M. L.: 1995, ‘Z-Less Stratification under Stable Conditions’, Submitted to Boundary-Layer Meteorol..

  • Dyer, A. J.: 1967, ‘The Turbulent Transport of Heat and Water Vapor in an Unstable Atmosphere’, Quart. J. Roy. Meteorol. Soc. 102, 501–508.

    Google Scholar 

  • Fairall, C. W. and Larsen, S. E.: 1986, ‘Inertial-Dissipation Methods and Turbulent Fluxes at the Air-Ocean Interface’, Boundary-Layer Meteorol. 34, 287–301.

    Google Scholar 

  • Hicks, B. B. (1981), ‘An Examination of Turbulence Statistics in the Surface Boundary Layer’, Boundary-Layer Meteorol. 21 389–402.

    Google Scholar 

  • Hicks, B. B. and Everett, R. G.: 1979, ‘Comments on “Turbulent Exchange Coefficients for Sensible Heat and Water vapour under Advective Conditions”’, J. Appl. Meteorol. 18, 381–382.

    Google Scholar 

  • Hill, R. J.: 1989, ‘Implications of Monin-Obukhov Similarity Theory for Scalar Quantities’, J. Atmos. Sci. 46, 2236–2244.

    Google Scholar 

  • Kohsiek, W.: 1982, ‘Measuring C T 2,C Q 2and C tQ in the Unstable Surface Layer, and Relations to the Vertical Fluxes of Heat and Moisture’, Boundary-Layer Meteorol. pp2489-107.

  • Lang, A. R. G., McNaughton, K. G., Chen, F., Bradley, E. F., and Ohtaki, E.: 1983a, ‘Inequality of Eddy Transfer Coefficients for Vertical Transport of Sensible and Latent Heats During Advective Inversions’, Boundary-Layer Meteorol. 25, 25–41.

    Google Scholar 

  • Lang, A. R. G., McNaughton, K. G., Chen, F., Bradley, E. F., and Ohtaki, E.: 1983b, ‘An Experimental Appraisal of the Terms in the Heat and Moisture Flux Equations for Local Advection’, Boundary-Layer Meteorol. 25, 89–102.

    Google Scholar 

  • Launder, B. E.: 1975, ‘On the Effects of a Gravitational Field on the Turbulent Transport of Heat and Momentum’, J. Fluid Mech. 67, 569–581.

    Google Scholar 

  • Leclerc, M. V. and Thurtell, G. W.: 1990, ‘Footprint Prediction of Scalar Fluxes using a Markovian Analysis’, Boundary-Layer Meteorol. 52, 247–258.

    Google Scholar 

  • McBean, G. A. and Elliot, J. A.: 1981, ‘Pressure and Humidity Effects on Optical Refractive-Index Fluctuations’, Boundary-Layer Meteorol. 20, 101–109.

    Google Scholar 

  • Moncrieff, J. B., Verma, S. B. and Cook, D. R.: 1992, ‘Intercomparison of Eddy Correlation Carbon Dioxide Sensors during FIFE-89’, J. Geophys. Res. 94 D17, 18,725–18,730.

    Google Scholar 

  • Ohtaki, E.: 1985, ‘On the Similarity in Atmospheric Fluctuations of Carbon Dioxide, Water vapour and Temperature over Vegetated Fields’, Boundary-Layer Meteorol. 32, 25–37.

    Google Scholar 

  • Phelps, G. T. and Pond, S.: 1971, ‘Spectra of the Temperature and Humidity Fluctuations and of Fluxes of Moisture and Heat in the Marine Boundary Layer’, J. Atmos. Sci. 28, 918–928.

    Google Scholar 

  • Priestley, J. T. and Hill, R. J.: 1985, ‘Measuring High-Frequency Humidity, Temperature and Radio Refractive Index in the Surface Layer’, J. Atmos. Ocean. Technol. 2, 233–251.

    Google Scholar 

  • Roth, M. and Oke, T. R.: 1993, ‘Turbulent Transfer Relationships over an Urban Surface. I: Spectral Characteristics’, Quart. J. Roy. Meteorol. Soc. 119, 1071–1104.

    Google Scholar 

  • Roth, M. and Oke, T. R.: 1995, ‘Relative Efficiencies of Turbulent Transfer of Heat, Mass and Momentum over a Patchy Urban Surface’, J. Atmos. Sci. 52, 1863–1874.

    Google Scholar 

  • Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., and Murphy, R. E.: 1992, ‘An Overview of the First International Satellite Land Surface Climatology Project ISLSCP Field Experiment (FIFE)’, J. Geophys. Res. 97 D17, 18,345–18,371

    Google Scholar 

  • Stannard, D. I. and Rosenberry, D. O. (1991), ‘A Comparison of Short-Term Measurements of Lake Evaporation using Eddy-Correlation and Energy Budget Methods’, J. Hydrol. 122, 15–22.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, D. Reidel, 666 pp.

  • Swinbank, W. C. and Dyer, A. J.: 1963, ‘An Experimental Study in Micrometeorology’, Quart. J. Roy. Meteorol. Soc. 102, 494–500.

    Google Scholar 

  • Tillman, J. E.: 1972, ‘The Indirect Determination of Stability, Heat and Momentum Fluxes in the Atmospheric Boundary Layer from Simple Scalar Variables during Dry Unstable Conditions’, J. Appl. Meteorol. 11, 783–792.

    Google Scholar 

  • Verma, S. B., Rosenberg, N. J., and Blad, B. L.: 1978, ‘Turbulent Exchange Coefficients for Sensible Heat and Water vapour under Advective Conditions’, J. Appl. Meteorol. 17, 330–338.

    Google Scholar 

  • Warhaft, Z.: 1976, ‘Heat and Moisture Flux in the Stratified Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 102, 703–707.

    Google Scholar 

  • Wesely, M. L.: 1988, ‘Use of Variance Techniques to Measure Dry Air-Surface Exchange Rates’, Boundary-Layer Meteorol. 44, 13–31.

    Google Scholar 

  • Wesely, M. L. and Hicks, B. B.: 1978, ‘High-Frequency Temperature and Humidity Correlation above a Warm Wet Surface’, J. Appl. Meteorol. 17, 123–128.

    Google Scholar 

  • Wylie, R. G. and Lalas, T.: 1992, ‘Measurement of Temperature and Humidity’, World Meteorological Organization, Technical note 194, Geneva.

  • Wyngaard, J. C.: 1973, ‘On Surface-Layer Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston.

    Google Scholar 

  • Wyngaard, J. C., Coté, O. R., and Izumi, Y.: 1971, ‘Local Free Convection Similarity and the Budgets of Shear Stress and Heat Flux’, J. Atmos. Sci. 28, 1171–1182.

    Google Scholar 

  • Wyngaard, J. C. and Brost, R. A.: 1984, ‘Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer’, J. Atmos. Sci. 41, 102–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now at SIMEPAR — Sistema Meteorológico do Paraná and UFPR — Universidade Federal do Paraná, Caixa Postal 318 CEP 80001-970, Curitiba PR Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, N.L., Brutsaert, W. Similarity of scalars under stable conditions. Boundary-Layer Meteorol 80, 355–373 (1996). https://doi.org/10.1007/BF00119423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119423

Keywords

Navigation