Skip to main content
Log in

A closure to derive a three-dimensional well-mixed trajectory-model for non-Gaussian, inhomogeneous turbulence

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A three-dimensional Lagrangian stochastic (LS) model to evaluate pollutant dispersion in the atmospheric boundary layer has been developed. The model satisfies the well-mixed criterion of Thomson and allows for inhomogeneous, skew turbulence. Making use of the spherical reference frame, one of the possible solutions has been obtained. A skewed joint probability density function (PDF), which reproduces the given velocity moments (means, variances, skewness and covariances), has been built-up by a linear combination of eight Gaussian PDFs. In order to verify consistency with the well-mixed criterion, the long term results have been compared with the theoretical behaviour. A comparison between our model and Thomson's published algorithms was also carried out. By comparing wind-tunnel data and numerical predictions, a further validation of our LS model has been obtained. From an analysis of the numerical results, we can state that our model is able to evaluate dispersion in the case of complex flows where the application of previous models is unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anfossi, D., Ferrero, E., Brusasca, G., Marzorati, A. and Tinarelli, G.: 1993, ‘A Simple Way of Computing Buoyant Plume Rise in Lagrangian Stochastic Dispersion Models’, Atmos. Environ. 27A, 1443–1451.

    Google Scholar 

  • Baerentsen, J. H. and Berkowicz, R.: 1984, ‘Monte Carlo Simulation of Plume Dispersion in the Convective Boundary Layer’, Atmos. Environ. 18, 701–712.

    Google Scholar 

  • de Baas, A. F., van Dop, H. and Nieuwstadt, F. T. M.: 1986, ‘An Application of the Langevin Equation for Inhomogeneous Conditions to Dispersion in a Convective Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 112, 165–180.

    Google Scholar 

  • Cenedese, A., Leuzzi, G. and Monti, P.: 1994, ‘Effects Produced by Velocity Covariance on a Lagrangian Model of Dispersion Over Obstacles’, in I. P. Castro and N. J. Rockliff, Stably Stratified Flows: Flow and Dispersion over Topography, Clarendon, Oxford, pp. 291–300.

    Google Scholar 

  • Du, S., Wilson, J. D., and Yee, E.: 1994, ‘Probability Density Functions for Velocity in the Convective Boundary Layer, and Implied Trajectory Models’, Atmos. Environ. 28, 1211–1217.

    Google Scholar 

  • Durbin, P. A.: 1983, ‘Stochastic Differential Equations and Turbulent Dispersion’, NASA reference publications 1103.

  • Durbin, P. A.: 1984, ‘Comments on Papers by Wilson et al. (1981) and Legg and Raupach (1982)’, Boundary-Layer Meteorol. 29. 409–411.

    Google Scholar 

  • Flesch, T. K. and Wilson, J. D.: 1992, ‘A Two-Dimensional Trajectory-Simulation Model for Non-Gaussian, Inhomogeneous Turbulence within Plant Canopies’, Boundary-Layer Meteorol. 61, 349–374.

    Google Scholar 

  • Hall, C. D.: 1975, ‘The Simulation of Particle Motion in the Atmosphere by a Numerical Random Walk Model’, Quart. J. Roy. Meteorol. Soc. 101, 235–244.

    Google Scholar 

  • Hanna, S. R.: 1978, ‘A Statistical Diffusion Model for use with Variable Wind Fields’, Proceedings of the AMS Fourth Symposium on Turbulent Diffusion and Air Pollution, Boston, pp. 14–18.

  • Janicke, L.: 1983, ‘Particle Simulation of Inhomogeneous Turbulent Diffusion’, Air Pollution Modelling and its Application II, Plenum, New York, pp. 527–535.

    Google Scholar 

  • Jonas, P. R. and Bartlett, J. T.: 1972, ‘The Numerical Simulation of Particle Motion in a Homogeneous Field of Turbulence’, J. Comp. Phys, 9, 290–302.

    Google Scholar 

  • Joynt, R. C. and Blackman, D. R.: 1976, ‘A Numerical Model of Pollution Transport’, Atmos. Environ. 10, 433–442.

    Google Scholar 

  • Kranz, W. T. and Hoult, D. A.: 1973, Design Manual for Tall Stacks, MIT Publishers.

  • Legg, B. J.: 1983, ‘Turbulent Dispersion from an Elevated Line Source: Markov Chain Simulations of Concentration and Flux Profiles’, Quart. J. Roy. Meteorol. Soc. 109, 645–660.

    Google Scholar 

  • Legg, B. J. and Rapauch, M. R.: 1982, ‘Markov-Chain Simulation of Particle Dispersion in Inhomogeneous Flows; the Mean Drift Velocity Induced by a Gradient in Eulerian Velocity Variance’, Boundary-Layer Meteorol. 24, 3–13.

    Google Scholar 

  • Ley, A. J.: 1982, ‘A Random Walk Simulation of Two-Dimensional Turbulent Diffusion in the Neutral Surface Layer’, Atmos. Environ. 16, 2799–2808.

    Google Scholar 

  • Ley, A. J. and Thomson, D. J.: 1983, ‘A Random Walk Model of Dispersion in the Diabatic Surface Layer’, Quart. J. Roy. Meteorol. Soc. 109, 847–880.

    Google Scholar 

  • Lin, C. C. and Reid, W. H.: 1962, ‘Turbulent Flow’, in Handbuch der Physik, Vol. VIII/2, Springer, Berlin, pp. 438–523.

    Google Scholar 

  • Luhar, A. K. and Britter, R. E.: 1989, ‘A Random Walk Model for Dispersion in Inhomogeneous Turbulence in a Convective Boundary Layer’, Atmos. Environ. 23, 1911–1924.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1975, Statistical Fluid Mechanics, Vol. 2, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Reid, J. D.: 1979, ‘Markov Chain Simulations of Vertical Dispersion in the Neutral Surface Layer for Surface and Elevated Releases’, Boundary-Layer Meteorol. 16, 3–22.

    Google Scholar 

  • Sawford, B. L. and Guest, F. M.: 1987, ‘Lagrangian Stochastic Analysis of Flux Gradient Relationships in the Convective Boundary Layer’, J. Atmos. Sci. 44, 1152–1165.

    Google Scholar 

  • Sawford, B. L. and Guest, F. M.: 1988, ‘Uniqueness and Universality of Lagrangian Stochastic Models of Turbulent Dispersion’, Proceedings American Meteorological Society, 8th Turbulence and Diffusion Symposium, 25–29 April, San Diego, pp. 96–99.

  • Scarani, C.: 1991, ‘Valutazione di Distribuzioni in un Aroblema di Dispersione Turbolenta’, Statistica 4, 549–559.

    Google Scholar 

  • Scarani, C. and Tampieri, F.: 1991, ‘Determination of Distributions in Simulation of Turbulent Dispersion’, in J. J. Berthelier (ed.), Proceedings of the 4th IMSL User Group Conf., Paris.

  • Shao, Y.: 1992, ‘Turbulent Dispersion in Coastal Atmospheric Boundary Layers: an Application of a Lagrangian Model’, Boundary-Layer Meteorol. 59, 363–385.

    Google Scholar 

  • Smith, F. B.: 1968, ‘Conditioned Particle Motion in a Homogeneous Turbulent Field’, Atmos. Environ. 2, 491–508.

    Google Scholar 

  • Snyder, W. H.: 1992, ‘Wind-Tunnel Simulation of Building Downwash from Electric-Power Generating Stations. Part I: Boundary Layer & Concentration Measurements’, Fluid Modeling Facility Internal Rpt., Environ, Prot. Agcy., Research Triangle Park, USA NC.

    Google Scholar 

  • Tennekes, H.: 1982, ‘Similarity Relations, Scaling Laws and Spectral Dynamics’, in F. T. M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, Dordrecht, p. 66.

  • Thompson, R.: 1971, ‘Numerical Calculation of Turbulent Diffusion’, Quart. J. Roy. Meteorol. Soc. 97, 93–98.

    Google Scholar 

  • Thomson, D. J.: 1984, ‘A Random Walk Modelling of Diffusion in Inhomogeneous Turbulence’, Quart. J. Roy. Meteorol. Soc. 110, 1107–1120.

    Google Scholar 

  • Thomson, D. J.: 1986, ‘A Random Walk Model of Dispersion in Turbulent Flows and its Application to Dispersion in a Valley’, Quart. J. Roy. Meteorol. Soc. 112, 511–530.

    Google Scholar 

  • Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech. 180, 529–556.

    Google Scholar 

  • Tinarelli, G., Giostra, U., Ferrero, E., Tampieri, F., Anfossi, D., Brusasca, G., and Trombetti, F.: 1992, ‘Spray, a 3D Particle Model for Complex Terrain Dispersion’, Proceedings American Meteorological Society, 10th Turbulence and Diffusion Symposium, Portland.

  • van Dop, H., Nieuwstadt, F. T. M., and Hunt, J. C. R.: 1985, ‘Random Walk Models for Particle Displacements in Inhomogeneous Unsteady Turbulent Flows’, Phys. Fluids 28, 1639–1653.

    Google Scholar 

  • Weil, J. C.: 1990, ‘A Diagnosis of the Asymmetry in Top-Down and Bottom-Up Diffusion using a Lagrangian Stochastic Model’, J. Atmos. Sci. 47, 501–515.

    Google Scholar 

  • Wilson, J. D. and Flesch, T. K.: 1993, ‘Flow Boundaries in Random-Flight Dispersion Models: Enforcing the Well-Mixed Condition’, J. Appl. Meteorol. 32, 1695–1707.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981a, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence — I. Systems with Constant Turbulent Velocity Scale’, Boundary-Layer Meteorol. 21, 295–313.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981b, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence — II. Systems with Variable Turbulent Velocity Scale’, Boundary-Layer Meteorol. 21, 423–441.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981c, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence — III. Comparison of Predictions with Experimental Data for the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 21, 443–463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monti, P., Leuzzi, G. A closure to derive a three-dimensional well-mixed trajectory-model for non-Gaussian, inhomogeneous turbulence. Boundary-Layer Meteorol 80, 311–331 (1996). https://doi.org/10.1007/BF00119421

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119421

Keywords

Navigation