Skip to main content
Log in

Optimization of dc SQUID voltmeter and magnetometer circuits

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We calculate the signal-to-noise ratio in a dc SQUID system as a function of source impedance, taking into account the effects of current and voltage noise sources in the SQUID. The optimization of both tuned and untuned voltmeters and magnetometers is discussed and typical sensitivities are predicted using calculated noise spectra. The calculations are based on an ideal symmetric dc SQUID with % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGycqGH9a% qpcaaIYaacbaGaa8htaiaa-LeadaWgaaWcbaacbiGaa4hmaaqabaGc% caGGVaGaeuOPdy0aaSbaaSqaaiaa+bdaaeqaaOGaeyypa0JaaGymaa% aa!3D23!\[\beta = 2LI_0 /\Phi _0 = 1\] and moderate noise rounding % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiGacqWFOaakcq% WFtoWrcqWF9aqpcqWFYaGmcqaHapaCcaWGRbWaaSbaaSqaaiaadkea% aeqaaGqaaOGaa4hvaiaac+cacaGFjbWaaSbaaSqaaerbbjxAHXgaiu% GacaqFWaaabeaakiab-z6agnaaBaaaleaacaqGGaacbiGaaWhmaaqa% baGccqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aGaaiykaaaa!471A!\[(\Gamma = 2\pi k_B T/I_0 \Phi _{{\rm{ }}0} = 0.05)\], where Φ0 is the flux quantum, T is the temperature, L is the SQUID inductance, and I 0 is the critical current of each junction. The optimum noise temperatures of tuned and untuned voltmeters are found to be 2.8(ΩL/R)T and 8(ΩL/R)T (1 + 1.5α2 + 0.7α4)1/22 respectively, where Ω/2π is the signal frequency, assumed to be much less than the Josephson frequency, and α is the coupling coefficient between the SQUID and its input coil. It is found that tuned and untuned magnetometers can be characterized by optimum effective signal energies given by (16k B TLE2 R)[1 + (1 + 1.5α2 + 0.7α2)1/2 + 0.75α2] and 2kB T iRiB/Ω2 L p respectively, where B is the bandwidth, R i is the resistance representing the losses in the tuned circuit at temperature T i and L p is the inductance of the pickup coil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. R. Radhakrishnan and V. L. Newhouse, J. Appl. Phys. 42, 129 (1971).

    Google Scholar 

  2. J. Clarke, Proc. IEEE 61, 8 (1973).

    Google Scholar 

  3. A. Davidson, R. S. Newbower, and M. R. Beasley, Rev. Sci. Instr. 45, 838 (1974).

    Google Scholar 

  4. J. H. Claasen, J. Appl. Phys. 46, 2268 (1975).

    Google Scholar 

  5. J. Clarke, in Superconductor Applications: SQUIDS and Machines, B. B. Schwartz and S. Foner, eds. (Plenum, 1977), p. 67.

  6. V. V. Danilov, K. K. Likharev, O. V. Sniguiriev, and E. S. Soldatov, IEEE Trans. Magn. MAG-13, 240 (1977).

    Google Scholar 

  7. A. V. Gusev and V. N. Rudenko, Zh. Eksp. Teor. Fiz. 74, 819 (1978) [Sov. Phys.—JETP 47, 428 (1978)].

    Google Scholar 

  8. F. Bordoni, P. Carelli, I. Modena, and G. L. Romani, J. Phys. (Paris) 39, C6–1213 (1978).

    Google Scholar 

  9. M. B. Simmonds, W. A. Fertig, and R. P. Giffard, IEEE Trans. Mag. MAG-15, 478 (1979).

    Google Scholar 

  10. W. S. Goree and V. W. Hesterman, in Applied Superconductivity, Vol. 1, V. L. Newhouse, ed. (Academic Press, New York, 1975).

    Google Scholar 

  11. G. Ehnholm, J. Low Temp. Phys. 29, 1 (1977).

    Google Scholar 

  12. R. P. Giffard and J. N. Hollenhorst, Appl. Phys. Lett. 32, 767 (1978).

    Google Scholar 

  13. G. Ehnholm, S. T. Islander, P. östman, and B. Rantala, J. Phys. (Paris) 39, C6–1206 (1978).

    Google Scholar 

  14. C. D. Tesche and J. Clarke, J. Low Temp. Phys. 29, 301 (1977).

    Google Scholar 

  15. C. D. Tesche and J. Clarke, J. Low Temp. Phys., this issue, preceding paper.

  16. J. Clarke, W. M. Goubau, and M. B. Ketchen, J. Low Temp. Phys. 25, 99 (1976).

    Google Scholar 

  17. M. B. Ketchen, J. Clarke, and W. M. Goubau, in Future Trends in Superconductive Electronics, B. Deaver, C. Falco, J. Harris, and S. Wolf, eds. (AIP Conference Proceedings No. 44; Am. Inst. Phys., 1978), p. 22.

  18. R. A. Webb, R. P. Giffard, and J. C. Whealley, J. Low Temp. Phys. 13, 383 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, and by the U.S. Office of Naval Research.

Guggenheim Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J., Tesche, C.D. & Giffard, R.P. Optimization of dc SQUID voltmeter and magnetometer circuits. J Low Temp Phys 37, 405–420 (1979). https://doi.org/10.1007/BF00119198

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119198

Keywords

Navigation