Skip to main content
Log in

Positive-ion mobility in dilute solutions of 4He in 3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The mobility of positive ions in essentially pure 3He and in solutions with 100, 300, 1000, 3000, and 10,000 ppm of 4He has been studied at pressures of 60 Torr, 10, 20, and 25.6 bar. For temperatures below about 100 mK the pureliquid mobility data are consistent with a ln (T 0/T) behavior except at the very lowest temperatures, where field-dependent effects may cause departures; both phenomena are in agreement with recent calculations of Bowley based on the Josephson-Lekner formalism. In the more concentrated solutions an increase in the ion radius (corresponding to a decrease in the mobility) is observed starting below ~200mK; this is interpreted as a polarization-potentialinduced phase separation resulting in a liquid 4He-rich “halo” about the solid ion core. At still lower temperatures a vanishing 4He content causes the solution data to rather abruptly rejoin the pure-liquid data. At still higher 4He concentrations additional very low-mobility species are observed which are likely ions with large metastable halos produced by a large 4He concentration at the field-emission tip where the ions are created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Fetter, in The Physics of Liquid and Solid Helium, Part I, K. H. Benneman and J. B. Ketterson, eds. (Wiley, New York, 1976), p. 207.

    Google Scholar 

  2. A. C. Anderson, M. Kuchnir, and J. C. Wheatley, Phys. Rev. 168, 261 (1968).

    Google Scholar 

  3. M. Kuchnir, Ion Mobility in Liquid 3He Below 1 K, Thesis, University of Illinois (1966); available from University Microfilms, Ann Arbor, Michigan.

  4. M. Kuchnir, J. B. Ketterson, and P. R. Roach, J. Low Temp. Phys. 19, 531 (1975).

    Google Scholar 

  5. M. Kuchnir, J. B. Ketterson, and P. R. Roach, in Low Temperature Physics—LT 13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1974), Vol. 1, p. 474.

    Google Scholar 

  6. C. N. Barber, P. V. E. McClintock, I. E. Miller, and G. R. Pickett, Phys. Lett. 54A, 241 (1975).

    Google Scholar 

  7. A. I. Ahonen, J. Kokko, O. V. Lounasmaa, M. A. Paalanen, R. C. Richardson, W. Schoepe, and Y. Takano, Phys. Rev. Lett. 37, 511 (1976); J. Low Temp. Phys. 30, 205 (1978).

    Google Scholar 

  8. P. D. Roach, J. B. Ketterson, and P. R. Roach, Phys. Rev. Lett. 39, 626 (1977).

    Google Scholar 

  9. P. D. Roach, J. B. Ketterson, and P. R. Roach, in Quantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Dufty, eds. (Plenum, New York, 1977), p. 259.

    Google Scholar 

  10. P. D. Roach, J. B. Ketterson, Pat R. Roach, Phys. Lett. 63A, 273 (1977).

    Google Scholar 

  11. K. R. Atkins, Phys. Rev. 116, 1339 (1959).

    Google Scholar 

  12. K. R. Atkins, Liquid Helium, Proceedings of the Enrico Fermi International School of Physics, Course XXI, G. Careri, ed. (Academic Press, New York, 1963), p. 403.

    Google Scholar 

  13. T. J. Sluckin, Phys. Lett. 64A 211 (1977).

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Statistical Physics (Academic Press, New York, 1958).

    Google Scholar 

  15. W. F. Saam and J. P. Laheurte, Phys. Rev. A 4, 1170 (1971).

    Google Scholar 

  16. N. F. Mott and J. Lekner, unpublished.

  17. H. T. Davis and R. Dagonnier, J. Chem. Phys. 44, 4030 (1966).

    Google Scholar 

  18. H. Gould and S. Ma, Phys. Rev. 183, 338 (1969).

    Google Scholar 

  19. L. Kramer, Phys. Rev. A 1, 1517 (1970).

    Google Scholar 

  20. B. D. Josephson and J. Lekner, Phys. Rev. Lett. 23, 111 (1969).

    Google Scholar 

  21. R. M. Bowley, J. Phys. C: Solid State Phys. 4, L207 (1971).

    Google Scholar 

  22. R. Abe and K. Aizu, Physics 123, 10 (1961); R. C. Clark, Proc. Phys. Soc. (Lond.) 82,785 (1963); G. T. Schappert, Phys. Rev. 168, 162 (1968).

    Google Scholar 

  23. R. M. Bowley, J. Phys. C: Solid State Phys. 11, 75 (1978).

    Google Scholar 

  24. A. L. Fetter and J. Kurkijärvi, Phys. Rev. B15, 4272 (1977).

    Google Scholar 

  25. R. M. Bowley, J. Phys. C: Solid State Phys. 11, 1361 (1978).

    Google Scholar 

  26. A. C. Mota, Rev. Sci. Instr. 42, 1541 (1971).

    Google Scholar 

  27. P. V. E. McClintock, Phys. Lett. 29A, 453 (1969).

    Google Scholar 

  28. P. W. Alexander, C. N. Barber, P. V. E. McClintock, and G. R. Pickett, Phys. Rev. Lett. 39, 1544 (1977).

    Google Scholar 

  29. A. J. Melmed, Surface Sci. 8, 191 (1967).

    Google Scholar 

  30. R. H. Sherman, in Proceedings of the 10th International Conference on Low Temperature Physics, M. P. Malkov, ed. (Moscow, 1966), Vol. 1, p. 188.

  31. D. F. Brewer, in The Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978), p. 640.

    Google Scholar 

  32. H. Namaizawa, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the U.S. Energy Research and Development Administration and the National Science Foundation under Grants DMR-74-12186 and DMR-76-21370.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roach, P.R., Ketterson, J.B. & Roach, P.D. Positive-ion mobility in dilute solutions of 4He in 3He. J Low Temp Phys 34, 169–195 (1979). https://doi.org/10.1007/BF00118554

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118554

Keywords

Navigation