Skip to main content
Log in

The influence of thermally activated flux creep on the ac response of a hard superconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A theoretical and experimental study is presented of the influence of thermally activated flux creep on the ac response of a type II superconductor in the mixed state. The theory describes the ac response of a cylindrical superconductor in the mixed state in an axial dc magnetic field and a superposed parallel ac field of low amplitude and low frequency. Thermally activated flux creep gives rise to flux motion at the peak and the valley of the sinusoidal ac applied field and a frequency-independent phase shift of the voltage induced in a pickup coil wound about the sample. The instantaneous voltage at the peak or valley of the ac applied field is related to the critical-current density J c and the pinning-energy barrier normalized by the temperature U/kT. The ac loss voltage and the voltage waveform were measured for a cold-worked NbZr sample. For temperatures T below 4.2 K, the measured values of kT/U are nearly proportional to the temperature. Both J c and U were observed to depend on magnetic field history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Google Scholar 

  2. R. W. Rollins, H. Küpfer, and W. Gey, J. Appl. Phys. 45, 5392 (1974).

    Google Scholar 

  3. J. F. Wagner and R. W. Rollins, J. Appl. Phys. 44, 1778 (1973).

    Google Scholar 

  4. P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).

    Google Scholar 

  5. M. R. Beasley, R. Labusch, and W. W. Webb, Phys. Rev. 181, 682 (1969).

    Google Scholar 

  6. Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. Lett. 9, 306 (1962).

    Google Scholar 

  7. Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 131, 2486 (1963).

    Google Scholar 

  8. R. A. Anderson and D. M. Ginsberg, Phys. Rev. B 5, 4421 (1972).

    Google Scholar 

  9. H. Boersch, B. Lischke, and H. Söllig, Phys. Stat. Sol. (b) 61, 215 (1974).

    Google Scholar 

  10. G. Antesberger and H. Ullmaier, Phil. Mag. 29, 1101 (1974).

    Google Scholar 

  11. J. M. A. Wade, Phil. Mag. 20, 1107 (1969).

    Google Scholar 

  12. J. E. Nicholson, B. S. Cort, and G. P. Cort, J. Low Temp. Phys. 26, 69 (1977).

    Google Scholar 

  13. J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 16, 734 (1966).

    Google Scholar 

  14. J. R. Clem, H. R. Kerchner, and S. T. Sekula, Phys. Rev. B 14, 1893 (1976).

    Google Scholar 

  15. S. T. Sekula, R. H. Kernohan, and E. S. Cantrell, Rev. Sci. Instr. 42, 1187 (1971).

    Google Scholar 

  16. H. Küpfer and W. Gey, Phil. Mag. 36, 859 (1977).

    Google Scholar 

  17. A. M. Campbell, J. Phys. C 2, 1492 (1969).

    Google Scholar 

  18. A. M. Campbell, Phil. Mag. B 37, 149 (1978).

    Google Scholar 

  19. S. T. Sekula and J. H. Barrett, Appl. Phys. Lett. 17, 204 (1970).

    Google Scholar 

  20. E. J. Kramer and A. Das Gupta, Phil. Mag. 26, 769 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research sponsored by the Division of Materials Science, U.S. Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerchner, H.R. The influence of thermally activated flux creep on the ac response of a hard superconductor. J Low Temp Phys 34, 33–52 (1979). https://doi.org/10.1007/BF00118548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118548

Keywords

Navigation