Skip to main content
Log in

Kapitza resistance: Axiomatic acoustic mismatch theory with loss

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We examine the anatomy of the quantitative properties of thermal transport across a solid-liquid boundary as it is described by acoustic mismatch theory. The single parameter, the Kapitza resistance, is a function of four loss parameters and one thermal transport parameter, the thermal diffusivity of the fluid. The loss parameters are to be determined from the dispersion relations for phonons at the peak of the thermal excitation in the material. The temperature dependence of the Kapitza resistance depends on the variation of the phonon excitation in the material with temperature, the familiar temperature-cubed factor, and the variation of the loss factors with temperature and frequency for phonons at the thermal peak, and the variation of the diffusivity with temperature. Since these parameters are undetermined and experimentally rather inaccessible, we conclude that for the present the Kapitza resistance must be viewed as a technological heat transport parameter. Some discussion is given of the part played by second sound in helium II in the surface heat transport process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Pollack, Rev. Mod. Phys. 41, 48 (1969).

    Google Scholar 

  2. N. S. Snyder, Cryogenics 10, 89 (1970).

    Google Scholar 

  3. L. J. Challis, J. Phys. C 7, 481 (1974).

    Google Scholar 

  4. D. Cheeke and H. Ettinger, Phys. Rev. Lett. 37, 1625 (1976).

    Google Scholar 

  5. J. L. Opsal and G. L. Pollack, Phys. Rev. A 9, 2227 (1974).

    Google Scholar 

  6. H. Haug and K. Weiss, Phys. Lett. 40A, 19 (1972).

    Google Scholar 

  7. R. E. Peterson and A. C. Anderson, J. Low Temp. Phys. 11, 639 (1973).

    Google Scholar 

  8. J. T. Follinsbee and A. C. Anderson, J. Low Temp. Phys. 17, 409 (1974).

    Google Scholar 

  9. C. L. Reynolds, Jr. and A. C. Anderson, Phys. Rev. B 14, 4114 (1976).

    Google Scholar 

  10. W. M. Saslow, J. Low Temp. Phys. 11, 255 (1973).

    Google Scholar 

  11. A. C. Anderson, in Phonon Scattering in Solids, L. J. Challis, V. W. Rampton, and A. F. G. Wyatt, eds. (Plenum, New York, 1976), p. 1.

    Google Scholar 

  12. C. L. Reynolds Jr. and A. C. Anderson, Phys. Rev. B 16, 673 (1977); J. S. Buechner and H. J. Maris, Phys. Rev. Lett. 34, 316 (1975); Addendum, Phys. Rev. B 14, 269 (1976).

    Google Scholar 

  13. P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968), Chapter 6.

    Google Scholar 

  14. L. M. Brekhovskikh, Waves in Layered Media (Academic Press, New York, 1960).

    Google Scholar 

  15. W. M. Ewing, W. C. Jardetzky, and F. Press, Elastic Waves in Layered Media (McGraw- Hill, New York, 1957).

    Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1959), Chapter 12.

    Google Scholar 

  17. A. Sommerfeld, Ann. Physik 28, 665 (1909); Partial Differential Equations (Academic, New York, 1949), Section 33.

    Google Scholar 

  18. I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965), Chapter 10, 11, and 23.

    Google Scholar 

  19. J. Wilks, Properties of Liquids and Solid Helium (Clarendon, Oxford, 1967), Chapter 8.

    Google Scholar 

  20. A. F. Andreev, Sov. Phys.—JETP 16, 1084 (1963).

    Google Scholar 

  21. C. J. Pethick and D. ter Haar, Physica 32, 1905 (1966).

    Google Scholar 

  22. J. T. Follinsbee and A. C. Anderson, Phys. Rev. Lett. 31, 1580 (1973).

    Google Scholar 

  23. J. Jäckle and K. W. Kehr, Phys. Rev. Lett. 27, 654 (1971).

    Google Scholar 

  24. B. N. Esel'son et al., Usp. Fiz. Nauk 112, 591 (1974) [Sov. Phys.—Usp. 17, 215 (1974)].

    Google Scholar 

  25. H. J. Maris, Rev. Mod. Phys. 49, 341 (1977).

    Google Scholar 

  26. L. R. Fox and M. W. P. Strandberg, Phys. Rev. Lett. 38 1295 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strandberg, M.W.P., Fox, L.R. Kapitza resistance: Axiomatic acoustic mismatch theory with loss. J Low Temp Phys 34, 17–31 (1979). https://doi.org/10.1007/BF00118547

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118547

Keywords

Navigation