Skip to main content
Log in

A moving grid finite-element model of the bulk properties of the atmospheric boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A moving-grid finite-element model has been developed to model numerically the vertically integrated properties of the atmospheric boundary layer (ABL) in one dimension. The model equations for mean wind velocity and potential temperature are combined with a surface energy budget and predictive equations for boundary-layer height to simulate both stable and unstable ABLs. The nodal position defining the top of the boundary layer is one of the model unknowns and is determined by boundary-layer dynamics. The finite-element method, being an integral method, has advantages of accurate representation of both bulk values and their vertical derivatives, the latter being essential properties of the nocturnal boundary layer. Compared with observations and results of other models, the present model predicts bulk properties very well while retaining a simple and economical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., Kuo, Y.-H., and Gyakum, J. R.: 1983, ‘Numerical Simulations of a Case of Explosive Marine Cyclogenesis’, Mon. Wea. Rev. 111, 1174–1188.

    Google Scholar 

  • Anthes, R. A. and Warner, T. T.: 1978, ‘Development of Hydrodynamic Models Suitable for Air Pollution and Other Mesometeorological Studies’, Mon. Wea. Rev. 106, 1045–1078.

    Google Scholar 

  • Barker, E. H. and Baxter, T. L.: 1975, ‘A Note on the Computation of Atmospheric Surface Layer Fluxes for Use in Numerical Modeling’, J. Appl. Meteorol. 14, 620–622.

    Google Scholar 

  • Boes, E. C.: 1981, ‘Fundamentals of Solar Radiation’, in Chapter 2 of J. F. Kreider and F. Kreith, (eds.), Solar Energy Handbook, McGraw-Hill, New York.

    Google Scholar 

  • Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.

    Google Scholar 

  • Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Boundary Layer’, J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary-Layer Data’, Tech. Pap. 19, CSIRO, Div. Meteor. Phys., Melbourne, Australia, 362 pp.

    Google Scholar 

  • Davies, J. A., Schertzer, W., and Nunez, M.: 1975, ‘Estimating Global Solar Radiation’, Boundary-Layer Meteorol. 9, 33–52.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for Use in General Circulation Models’, Mon. Wea. Rev. 100, 93–106.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation’, J. Geophys. Res. 83, 1889–1903.

    Google Scholar 

  • Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., and Troen, I. B.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 17, 247–264.

    Google Scholar 

  • Malcher, J. and Kraus, H.: 1983, ‘Low-Level Jet Phenomena Described by an Integrated Dynamical PBL Model’, Boundary-Layer Meteorol. 27, 327–343.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Tennekes, H.: 1981, ‘A Rate Equation for the Nocturnal Boundary-Layer Height’, J. Atmos. Sci. 38, 1418–1428.

    Google Scholar 

  • Smeda, M. S.: 1979, ‘Incorporation of Planetary Boundary Layer Processes into Numerical Forecast Models’, Boundary-Layer Meteorol. 16, 115–129.

    Google Scholar 

  • Staley, D. O. and Jurica, G. M.: 1972, ‘Effective Atmospheric Emissivity Under Clear Skies’, J. Appl. Meteorol. 11, 349–356.

    Google Scholar 

  • Stull, R. B.: 1973, ‘Inversion Rise Model Based on Penetrative Convection’, J. Atmos. Sci. 30, 1092–1099.

    Google Scholar 

  • Thorpe, A. J. and Guymer, T. H.: 1977, ‘The Nocturnal Jet’, Quart. J. Roy. Meteorol. Soc. 103, 633–653.

    Google Scholar 

  • Wyngaard, J. C., 1975, ‘Modeling the Planetary Boundary Layer-Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441–460.

    Google Scholar 

  • Zeman, O.: 1979, ‘Parameterization of the Dynamics of Stable Boundary Layers and Nocturnal Jets’, J. Atmos. Sci. 36, 792–804.

    Google Scholar 

  • Zeman, O. and Tennekes, H.: 1977, ‘Parameterization of the Turbulent Energy Budget at the Top of the Daytime Atmospheric Boundary Layer’, J. Atmos. Sci. 34, 111–123.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Comments on the Paper of H. Tennekes’, J. Atmos. Sci. 32, 991–992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Journal Paper No. J-12996 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, R.D., Takle, E.S. A moving grid finite-element model of the bulk properties of the atmospheric boundary layer. Boundary-Layer Meteorol 46, 113–132 (1989). https://doi.org/10.1007/BF00118449

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118449

Keywords

Navigation