Skip to main content
Log in

A two-stage carcinogenesis model for risk assessment

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • ARMITAGE, P. and DOLL, R. (1954). The age distribution of cancer and a multistage theory of carcinogenesis. Br. J. Cancer 8:1–12.

    Google Scholar 

  • ARMITAGE, P. and DOLL, R. (1957). A two-stage theory of carcinogenesis in relation to the age distribution of human cancer.

  • ASTRIN, S.M., and ROTHBERG, P.G. (1983) Oncogenes and cancer. Cancer Invest. 1:355–364.

    Google Scholar 

  • CARDIS, E.M. (1985). Modelling the effect of exposure to environmental carcinogens on incidence of cancers in populations. Ph.D. Dissertation, University of Washington.

  • CAVANEE, W.K., DRYJA, T.P., PHILLIPS, R.A., BENEDICT, W.F., GODBOUT, R., et al. (1983). Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 30:779–784.

    Google Scholar 

  • COMINGS, D.E. (1973). A general theory of carcinogenesis. Proc. Natl. Acad. Sci. USA 70:3324–3328.

    Google Scholar 

  • COOK, P.J., DOLL, R. and FELLINGHAM, S.A. (1969). A mathematical model for the age distribution of cancer in man. Int. J. Cancer 4:93–112.

    Google Scholar 

  • DRYJA, T.P., CAVANEE, W., WHITE, R., RAPAPORT, J.M., PETERSON, R., et al. (1984). Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. N. Engl. J. Med. 310:550–553.

    Google Scholar 

  • FIALKOW, P.J. (1977). Clonal origin and stem cell evolution of human tumors. In: Mulvihill, J.J., Miller, R.W., Fraumeni, J.F. Jr. (eds.). Genetics of Human Cancer, pp. 439–453. Raven Press, New York.

    Google Scholar 

  • FISHER, J.C. (1958) Multiple mutation theory of carcinogenesis. Nature 181:651–652.

    Google Scholar 

  • FRIEND, S.H., BERNARDS, R., ROGELJ, S., et al. (1986). A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646.

    Google Scholar 

  • GREENFIELD, R.E., LLWEIN, L.B. and COHEN, S.M. (1984). A general probabilistic model of carcinogenesis: analysis of experimental urinary bladder cancer. Carcinogenesis 5:437–445.

    Google Scholar 

  • HENNINGS, H, SHORES, R, WENK, M.L., SPANGLER, E.F., TARONE, R., et al. (1983). Malignant conversion of mouse skin tumors is increased by tumor initiators and unaffected by tumor promoters. Nature 304:67–69.

    Google Scholar 

  • HETHCOTE, H.W. and KNUDSON, A.G. (1978). Model for the incidence of embryonal cancers: Application to retinoblastoma. Proc. Natl. Acad. Sci. USA 75:2453–2457.

    Google Scholar 

  • IVERSON, O.H. (1984). Urethane (ethyl carbamate) alone carcinogenic for mouse skin. Carcinogenesis 5:911–916.

    Google Scholar 

  • KINSELLA, A.R. and RADMAN, M. (1978). Tumor promoter induces sister chromatid exchanges: Relevance to mechanisms of carcinogenesis. Proc. Natl. Acad. Sci. USA 75:6149–6153.

    Google Scholar 

  • KNUDSON, A.G. (1971). Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68:820–823.

    Google Scholar 

  • KNUDSON, A.G. Jr., HETHCOTE, H.W. and BROWN, B.W. (1975). Mutation and childhood cancer: A probabilistic model for the incidence of retinoblastoma. Proc. Natl. Acad. Sci. USA 72:5116–5120.

    Google Scholar 

  • KNUDSON, A.G. (1985). Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 45:1437–1443.

    Google Scholar 

  • KOUFOS, A., HANSEN, M.F., LAMPKIN, B.C., WORKMAN, M.L., COPELAND, N.G., et al. (1984). Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumor. Nature 309:170–172.

    Google Scholar 

  • KOUFOS, A., HANSEN, M.F., COPELAND, N.G., et al. (1985). Loss of heterozygosity in three embryonal tumors suggests a common pathogenetic mechanism. Nature 316:330–334.

    Google Scholar 

  • KRAILO, M., THOMAS, D.C. and PIKE, M. (1987). Fitting models of carcinogenesis to a case-control study of breast cancer. J. Chronic Diseases 40, Suppl. 2, 181S–189S.

  • LAND, H., PARADA, L.F. and WEINBERG, R.A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–601.

    Google Scholar 

  • MOOLGAVKAR, S.H. (1978). The multistage theory of carcinogenesis and the age distribution of cancer in man. JNCI 61:49–52.

    Google Scholar 

  • MOOLGAVKAR, S.H. (1980). The Neyman-Scott carcinogenesis model for low-dosage extrapolation. Math. Biosci. 50:155–156.

    Google Scholar 

  • MOOLGAVKAR, S.H. (1983). Model for human carcinogenesis: Action of environmental agents. Environ. Health Perspect. 50:285–291.

    Google Scholar 

  • MOOLGAVKAR, S.H. (1986a). Carcinogenesis modeling: From molecular biology to epidemiology. Ann. Rev. Public Health 7:151–169.

    Google Scholar 

  • MOOLGAVKAR, S.H. (1986b). Hormones and multistage carcinogenesis. Cancer Surveys 5:635–648.

    Google Scholar 

  • MOOLGAVKAR, S.H. and VENZON, D.J. (1979). Two-event models for carcinogenesis: Incidence curves for childhood and adult tumors. Math. Biosci. 47:55–77.

    Google Scholar 

  • MOOLGAVKAR, S.H., DAY, N.E. and STEVENS, R.G. (1980). Two-stage model for carcinogenesis: Epidemiology of breast cancer in females. J. Natl. Cancer Inst. 65:559–569.

    Google Scholar 

  • MOOLGAVKAR, S.H., and KNUDSON, A.G. Jr. (1981). Mutation and cancer: A model for human carcinogenesis. J. Natl. Cancer Inst. 66:1037–1052.

    Google Scholar 

  • NEYMAN, J. and SCOTT, E. (1967). Statistical aspects of the problem of carcinogenesis. In: “Fifth Berkeley Symposium on Mathematical Statistics and Probability, December 27, 1965–January 7, 1966,” Berkeley, Calif. Berkeley and Los Angeles: Univ. Calif. Press, pp. 745–776.

    Google Scholar 

  • NORDLING, C.O. (1953). A new theory on the cancer inducing mechanism. Br. J. Cancer 7:68–72.

    Google Scholar 

  • PETO R. (1977). Epidemiology, multistage models, and short-term mutagenecity tests. In: Hiatt, H.H., Watson, J.D., and Winsten, J.A. (eds.). “Origins of Human Cancer, Book C. Human Risk Assessment.” Cold Spring Harbor Laboratory, pp. 1403–1428.

  • POTTER, V.P. (1980). Initiation and promotion in cancer formation: The importance of studies on intercellular communication. Yale J. Biol. Med. 53:367–384.

    Google Scholar 

  • SCHERER, E., FERINGA, A.W. and EMMELOT, P. (1984). Initiation-promotion-initiation. Induction of neoplastic foci within islands of precancerous liver cells in the rat. In: Borzsonyi, M., Day, N.E., Lapis, K. and Yamasaki, H. (eds.) “Models, Mechanisms and Etiology of Tumor Promotion.” IARC Scientific Publications No. 56.

  • SLAGA, T.J. (1984). Can tumor promotion be effectively inhibited. In: Borzsonyi, M., Day, N.E., Lapis, K. and Yamasaki, H. (eds.) “Models, Mechanisms and Etiology of Tumor Promotion.” IARC Scientific Publications No. 56.

  • YUSPA, S.H. (1984). Mechanisms for initiation and promotion in mouse epidermis. In: Borzsonyi, M., Day, N.E., Lapis, K. and Yamasaki, H. (eds.) “Models, Mechanisms and Etiology of Tumor Promotion.” IARC Scientific Publications No. 56.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moolgavkar, S.H. A two-stage carcinogenesis model for risk assessment. Cell Biol Toxicol 5, 445–460 (1989). https://doi.org/10.1007/BF00118413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118413

Keywords

Navigation