Skip to main content
Log in

Superconductivity in ZrxNb1−2xMox alloys: Possible dominance of a soft phonon mode

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Normal-state specific heat and superconducting transition temperature measurements were performed on pure polycrystalline Nb and isoelectronic bcc ZrxNb1−2xMox alloys (x = 0.02, 0.05, and 0.10). Measured T c, γ and θ D all decline nearly linearly from the pure Nb values with increasing x. The changes are 15, 10, and 6%, respectively, for x = 0.1. T cH calculated by Hopfield's theory, using data and linearly interpolated values of η and θ D /〈θ2linear 1/2, increases with x by 28% for x = 0.1. By relaxing the linear interpolation of θD/〈θ21/2, Hopfield's theory can be used to evaluate an average phonon frequency 〈θ2emp 1/2 from data. It is found to be nearly constant at about 229 K, in contrast to 〈θ2linear 1/2, which declines by 8% at x = 0.1. We suggest that one possible explanation for this behavior is the dominance of incipient soft-phonon longitudinal modes which occur in Nb and presumably in the alloys. Miedema's method has been used to calculate the variation of both γ and T c with alloying. The calculated γ is nearly constant, while the calculated T c declines more quickly than the measured variation. The band-structure electron density of states calculated with the aid of McMillan's equation for these isoelectronic alloys is found to decline by 8% at x = 0.1, in contrast to the prediction of the rigid band model. Normal-state low-temperature specific heat measurements on a pure annealed polycrystalline sample of Nb yield γ = 7.80 ± 0.02 mJ mole−1 K−2 and θD = 276 ± 2 K, in excellent agreement with previous measurements. The break in slope of C p/T vs. T 2 at 3.2 K is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. McMillan, Phys, Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  2. J. J. Hopfield, Phys. Rev. 186, 443 (1969).

    Article  ADS  Google Scholar 

  3. J. W. Garland and P. B. Allen, Physica 55, 669 (1971).

    Article  Google Scholar 

  4. J. Appel and W. Kohn, in Superconductivity in d and f Band Metals, David H. Douglass, ed. (AIP Conf. Proc. No. 4, New York, 1972).

  5. K. H. Bennemann and J. W. Garland, in Superconductivity in d and f Band Metals, David H. Douglass, ed. (AIP Conf. Proc. No. 4, New York, 1972).

  6. S. Barašic, J. Labbé, and J. Friedel, Phys. Rev. Lett. 25, 919 (1970).

    Article  ADS  Google Scholar 

  7. G. D. Gaspari and B. L. Gyorffy, Phys. Rev. Lett. 28, 801 (1972).

    Article  ADS  Google Scholar 

  8. G. M. Eliashberg, Zh. Eksp. i Teor. Fiz. 38, 966 (1960); 39, 1437 (1960) [English transl., Soviet Phys.—JETP 11, 696 (1960); 12, 1000 (1961)].

    Google Scholar 

  9. R. C. Dynes, Solid State Commun. 10, 615 (1972).

    Article  Google Scholar 

  10. M. Ishikawa and L. Toth, Phys. Rev. B 3, 1856 (1971).

    Article  ADS  Google Scholar 

  11. J. M. Corson and A. J. Cook, Phys. Stat. Sol. 40, 657 (1970).

    Google Scholar 

  12. H. A. Leupold and H. A. Boorse, Phys. Rev. 134, Al322 (1964).

    Article  ADS  Google Scholar 

  13. M. A. Moore and D. I. Paul, Solid State Commun. 9, 1303 (1971).

    Article  Google Scholar 

  14. I. A. Popov and I. G. Rodionova, Zh. Neorg. Khim. 9, 890 (1964).

    Google Scholar 

  15. V. N. Svechnikov and A. T. S. Spektor, Russ. J. Metallurgy 4, 118 (1968).

    Google Scholar 

  16. J. D. Frank and D. L. Martin, Can J. Phys. 39, 1320 (1961).

    ADS  Google Scholar 

  17. B. A. Green and H. V. Culbert, Phys. Rev. 137, Al168 (1965).

    Article  ADS  Google Scholar 

  18. R. W. Rollins and Laverne C. Clune, Phys. Rev. B 6, 2609 (1972).

    Article  ADS  Google Scholar 

  19. J. Ferriera da Silva, E. A. Burgemeister, and Z. Doukoupol, Physica 41, 409 (1969).

    Article  Google Scholar 

  20. F. Heiniger, E. Bucher, and J. Mueller, Phys. Kondens. Mater. 5, 243 (1966).

    Article  Google Scholar 

  21. M. Ishikawa, Ph.D. thesis, U. of Minnesota (1971) (unpublished).

  22. Y. Nakagawa and A. D. B. Woods, Phys. Rev. Lett. 11, 271 (1963).

    Article  ADS  Google Scholar 

  23. R. I. Sharp, J. Phys. C 2, 421 (1969).

    Article  ADS  Google Scholar 

  24. A. Melo, Thesis, Oxford Univ. (1970) (unpublished).

  25. B. M. Powell, P. Martel, and A. D. B. Woods, Phys. Rev. 171, 727 (1968).

    Article  ADS  Google Scholar 

  26. C. M. Varma, J. C. Phillips, and S. T. Chui, Phys. Rev. Lett. 33, 1223 (1974).

    Article  ADS  Google Scholar 

  27. J. J. Hopfield, Physica 55, 41 (1971).

    Article  Google Scholar 

  28. A. R. Miedema, J. Phys. F 3, 1803 (1973).

    Article  ADS  Google Scholar 

  29. A. R. Miedema, J. Less Common Metals, 32, 117 (1973).

    Article  Google Scholar 

  30. H. G. Smith, in Superconductivity in the d and f Band Metals, David H. Douglass, ed. (AIP Conf. Proc. No. 4, New York, 1972).

  31. R. L. Cappelletti, Phys. Lett. 46A, 315 (1974).

    Article  Google Scholar 

  32. W. Weber, Phys. Rev. B 8, 5093 (1973).

    Article  ADS  Google Scholar 

  33. A. R. Miedema, J. Phys. F 4, 120 (1974).

    Article  ADS  Google Scholar 

  34. A. R. Miedema and M. H. van Maaren, Physica 69, 308 (1973).

    Article  Google Scholar 

  35. M. Blackman, The Specific Heat of Solids, in Encyclopedia of Physics, S. Flügge, ed., VII, Part 1, p. 325.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by a National Science Foundation Departmental Science Development Grant No. NSF-GU2603.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, M., Cappelletti, R.L. Superconductivity in ZrxNb1−2xMox alloys: Possible dominance of a soft phonon mode. J Low Temp Phys 20, 407–422 (1975). https://doi.org/10.1007/BF00117806

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117806

Keywords

Navigation