Skip to main content
Log in

Impurity ions in liquid helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A technique for introducing a wide variety of positive ions into liquid helium is described and used to investigate positive atomic ions of K, Rb, Cs, Ca, Sr, and Ba. The zero-field mobilities of the impurity ions were measured in He II in the temperature range 1.2 < T < 1.4 K. The dependence of mobility on ion mass alone was found directly for Ca+ ions by investigating two isotopes. Measurements were made of the ion drift velocities in high electric fields, where nucleation of quantized vortex rings occurs. All the data and its analysis are consistent with the assumptions that all the impurity ions are singly charged, that the size of the cluster surrounding the ion is significantly different for the different ions, and that the ion-roton cross section is approximately geometric. A possible alternative model for the structure of the ion complex is discussed and a mechanism is suggested which may account for the observed variations in ionic radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Reif and L. Meyer, Phys. Rev. 119, 1164 (1960).

    Article  ADS  Google Scholar 

  2. K. W. Schwarz and R. W. Stark, Phys. Rev. Lett. 21, 967 (1968).

    Article  ADS  Google Scholar 

  3. K. W. Schwarz and R. W. Stark, Phys. Rev. Lett. 22, 1278 (1969).

    Article  ADS  Google Scholar 

  4. G. Baym, R. G. Barrera, and C. J. Pethick, Phys. Rev. Lett. 22, 20 (1969).

    Article  ADS  Google Scholar 

  5. H. E. Hall and W. F. Vinen, Proc. Roy. Soc. A 238, 215 (1956).

    MATH  ADS  Google Scholar 

  6. H. E. Hall, Proc. Roy. Soc. A 245, 546 (1958).

    ADS  Google Scholar 

  7. R. L. Douglass, Phys. Rev. Lett. 13, 791 (1964).

    Article  ADS  Google Scholar 

  8. W. I. Glaberson, J. Low Temp. Phys. 1, 289 (1969).

    Article  Google Scholar 

  9. P. E. Parks and R. J. Donnelly, Phys. Rev. Lett. 16, 45 (1966).

    Article  ADS  Google Scholar 

  10. G. Careri, S. Cunsolo, P. Mazzoldi, and M. Santini, Phys. Rev. Lett. 15, 392 (1965).

    Article  ADS  Google Scholar 

  11. G. Careri, S. Cunsolo, P. Mazzoldi, and M. Santini, in Low Temperature Physics LT9, J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub, eds. (Plenum Press, New York, 1965), Part A, p. 335.

    Google Scholar 

  12. R. J. Donnelly and P. H. Roberts. Phil. Trans. A 271, 41 (1971).

    MATH  ADS  Google Scholar 

  13. G. W. Rayfield, Phys. Rev. Lett. 16, 934 (1966).

    Article  ADS  Google Scholar 

  14. K. R. Atkins, Phys. Rev. 116, 1339 (1959).

    Article  ADS  Google Scholar 

  15. G. Ahlers and G. Gamota, Phys. Lett. 38A, 65 (1972).

    Article  Google Scholar 

  16. K. W. Schwarz, Phys. Rev. A 6, 1958 (1972).

    Article  ADS  Google Scholar 

  17. J. Poitrenand and F. I. B. Williams, Phys. Rev. Lett. 29, 1230 (1972); 32, 1213 (1974).

    Article  ADS  Google Scholar 

  18. W. W. Johnson and W. I. Glaberson, Phys. Rev. Lett. 29, 214 (1972).

    Article  ADS  Google Scholar 

  19. W. W. Johnson and W. I. Glaberson, in Low Temperature Physics LT-13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1974), Vol. 1, p. 430.

    Google Scholar 

  20. W. W. Johnson and W. I. Glaberson, Phys. Rev. A 10, 868, (1974).

    Article  ADS  Google Scholar 

  21. G. G. Ihas, Thesis, University of Michigan (University Microfilms, Ann Arbor), 1971; G. G. Ihas and T. M. Sanders, Jr., Phys. Rev. Lett. 27, 383 (1971).

    Google Scholar 

  22. G. G. Ihas and T. M. Sanders, Jr., Phys. Lett. 31A, 502 (1970).

    Article  Google Scholar 

  23. Frederick Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940), p. 93.

    MATH  Google Scholar 

  24. Handbook of Chemistry and Physics (Chemical Rubber Co.).

  25. D. G. Henshaw and A. D. B. Woods, Phys. Rev. 121, 1266 (1961).

    Article  ADS  Google Scholar 

  26. R. M. Bowley, J. Phys. C: Proc. Phys. Soc. London 4, 1645 (1971).

    ADS  Google Scholar 

  27. R. G. Barrera, thesis, University of Illinois (University Microfilms, Ann Arbor), 1972; R. G. Barrera and G. Baym, Phys. Rev. 6, 1558 (1972).

    Google Scholar 

  28. I. Iguchi, J. Low Temp. Phys. 4, 637 (1971).

    Google Scholar 

  29. B. N. Esel'son, Yu. Z. Kovdrya, and V. B. Shikin, Soviet Phys.—JETP 32, 37 (1971).

    Google Scholar 

  30. T. C. Padmore, Phys. Rev. A 5, 356 (1972).

    Article  ADS  Google Scholar 

  31. R. J. Donnelly and P. H. Roberts, Proc. Roy. Soc. A 312, 519 (1969).

    ADS  Google Scholar 

  32. W. P. Pratt, Jr., Ph.D. thesis, University of Minnesota, 1967 (unpublished).

  33. S. Cunsolo and B. Maraviglia, Phys. Rev. 187, 292 (1969).

    Article  ADS  Google Scholar 

  34. A. Dalgarno, Advn. Phys. 11, 281 (1962).

    Article  ADS  Google Scholar 

  35. A. Dalgarno, private communication.

  36. M. Yoshimine and R. P. Hurst, Phys. Rev. 135A, 612 (1964).

    Article  ADS  Google Scholar 

  37. H. Margenau, Rev. Mod. Phys. 11, 1 (1939).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaberson, W.I., W. Johnson, W. Impurity ions in liquid helium. J Low Temp Phys 20, 313–338 (1975). https://doi.org/10.1007/BF00117800

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117800

Keywords

Navigation