Skip to main content
Log in

Weak localization experiments on magnesium films: effects of substrate, ion implantation, microwaves, temperature, and resistivity/thickness on the phase and spin-orbit relaxation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Weak localization magnetoresistance is used to investigate spin-orbit and the phase relaxation rates. The spin-orbit rate is independent of temperature. By plotting the spin-orbit rate as a function of the inverse thickness of the films, we separate the spin-orbit relaxation into two parts: one from the scattering off the bulk imperfections, and one from the scattering against the two surfaces. The ratio between the spin-orbit and the impurity relaxation rates in the bulk was found to be close to 2 × 10−5 for all the different samples. The influence of implanted heavy ions on the spin-orbit relaxation was also investigated. The dependence of the phase relaxation rate on resistivity, film thickness, and temperature has been studied. Theoretical results for electron-electron and electron-phonon scattering are compared to our data. We consider two novel temperature-independent phase relaxation mechanisms which may explain the residual rate we observe. The influence of a high-frequency electromagnetic field on the phase relaxation rate was investigated. For small microwave power levels the phase relaxation rate was found to increase linearly with microwave power. In the absence of a magnetic field and for samples having a dominating spin-orbit interaction (antilocalization) the resistance increases with microwave power, but turns into a decrease at high microwave power levels. For those samples having very weak spin-orbit interaction the resistance decreases continuously as we apply microwaves. This is roughly the expected behavior, but the observed change in resistance was larger than that calculated at small microwave power levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abrahams, P. W. Anderson, D. C. Licciadello, and T. W. Ramakrishnan, Phys. Rev. Lett. 43, 718 (1979).

    Google Scholar 

  2. B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44, 1288 (1980).

    Google Scholar 

  3. B. L. Altshuler, D. E. Khmelnitskij, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).

    Google Scholar 

  4. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).

    Google Scholar 

  5. S. Maekawa and H. Fukuyama, J. Phys. Soc. Japan 50, 2516 (1981).

    Google Scholar 

  6. G. Bergmann, Phys. Rep. 107, 1 (1984).

    Google Scholar 

  7. S. Kobayashi and F. Komori, Prog. Theor. Phys. (Suppl.) 84, 224 (1985).

    Google Scholar 

  8. S. Chakravarti and A. Schmid, Phys. Rep. 140, 193(1986).

    Google Scholar 

  9. P. E. Lindelof, J. Nørregaard, andJ. Bindslev Hansen, Z. Phys. B Condensed Matter 59, 423 (1985).

    Google Scholar 

  10. P. E. Lindelofand S. Wang, Phys. Rev. B 33, 1478 (1986).

    Google Scholar 

  11. S. Wang and P. E. Lindelof, Phys. Rev. Lett. 59, 1156 (1987).

    Google Scholar 

  12. L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskij, Pis'ma Zh. Eksp. Teor. Fiz. 30, 248 (1979) [JETP Lett. 30, 228 (1979)].

    Google Scholar 

  13. G. Bergmann, Phys. Rev. B 28, 2914 (1983).

    Google Scholar 

  14. S. Kobayashi, F. Komori, Y. Ootuka, and W. Sasaki, J. Phys. Soc. Japan 49, 1635 (1980).

    Google Scholar 

  15. G. Bergmann, Phys. Rev. B 25, 2937 (1982).

    Google Scholar 

  16. B. L. Altshuler and A. G. Aronov, Solid State Commun. 38, 11 (1981).

    Google Scholar 

  17. P. A. Lee and T. V. Ramakrishnan, Phys. Rev. B 26, 4009 (1982).

    Google Scholar 

  18. M. Gijs, C. van Haesendonck, and Y. Bruynseraede, J. Phys. F: Met. Phys. 16, 1227 (1986).

    Google Scholar 

  19. D. E. Khmelnitskij, Physica 126B, 235 (1984).

    Google Scholar 

  20. D. Y. Sharvin and Y. V. Sharvin, Pis'ma Zh. Eksp. Teor. Fiz. 34, 285 (1981) [JETP Lett. 34, 272 (1981)].

    Google Scholar 

  21. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), p. 15.

    Google Scholar 

  22. R. P. Peters and G. Bergmann, J. Phys. Soc. Japan 54, 3478 (1985).

    Google Scholar 

  23. P. Renucci, L. Gaudart, J. P. Petrakian, and D. Roux, Thin Solid Films 130, 75 (1985).

    Google Scholar 

  24. K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969), p. 344.

    Google Scholar 

  25. M. B. Walker, Phys. Rev. B 3, 30 (1971).

    Google Scholar 

  26. R. T. Schumacher and S.-K. Wang, Phys. Rev. B 10, 2129 (1974).

    Google Scholar 

  27. G. Bergmann and C. Horriar-Esser, Phys. Rev. 31, 1161 (1985).

    Google Scholar 

  28. A. A. Abrikosovand L. P. Gorkov, Zh. Eksp. Teor. Fiz. 42, 1088 (1962) [Sov. Phys. JETP. 15, 752 (1962)].

    Google Scholar 

  29. R. Merservey and P. M. Tedrow, Phys. Rev. Lett. 41, 805 (1978).

    Google Scholar 

  30. M. Gijs, C. van Haesendonck, Y. Bruynseraede, and G. Deutscher in Proceedings International Conference on LITPIM, Braunschweig, 1984, Schweitzer and Kramer, eds. (PTB, 1984), p. 139.

  31. G. Bergmann, Phys. Rev. Lett. 48, 1046 (1982).

    Google Scholar 

  32. G. Bergmann, Phys. Rev. Lett. 53, 1100 (1984).

    Google Scholar 

  33. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskij, Solid State Commun. 39, 619 (1981).

    Google Scholar 

  34. S. Shelenko and J. Rammer, to be published.

  35. J. Rammerand A. Schmid, Phys. Rev. B 34, 1352 (1986).

    Google Scholar 

  36. A. Schmid, Z. Phys. 271, (1973).

  37. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskij, J. Phys. C: Solid State 15, 7367 (1982).

    Google Scholar 

  38. W. Eiler, J. Low Temp Phys. 56, 481 (1984).

    Google Scholar 

  39. G. Bergmann, Phys. Rev. B 28, 515 (1983).

    Google Scholar 

  40. A. E. White, R. C. Dynes, and J. P. Garno, Phys. Rev. B 29, 3694 (1984).

    Google Scholar 

  41. J. Kästner and R. Mölleken, in Proceedings International Conference in LITPIM, Braun-schweig, 1984, Schweitzer and Kramer, eds. (PTB, 1984), p. 177.

  42. V. V. Afonin, Yu. M. Galperin, and R. N. Ignatjev, Fiz. Tverd. Tela 28, 1063 (1986) [Sov. Phys. Solid State 28, 594 (1986)].

    Google Scholar 

  43. P. A. Vorobjev, Fiz Tverd, Tela. 27, 545 (1985) [Sov. Phys. Solid State 27, 336 (1985)].

    Google Scholar 

  44. M. E. Gershenzon and V. N. Gubankov, Pis'ma Zh. Eksp. Teor. Fiz. 34, 32 (1981) [JETP Lett. 34, 30 (1981)].

    Google Scholar 

  45. S. A. Vitkalov, G. M. Gusev, Z. D. Kvon, and G. I. Levjev, Pis'ma Zh. Eksp. Teor. Fiz. 43, 145 (1986) [JETP Lett. 43, 185 (1986)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Lindelof, P.E. Weak localization experiments on magnesium films: effects of substrate, ion implantation, microwaves, temperature, and resistivity/thickness on the phase and spin-orbit relaxation. J Low Temp Phys 71, 403–444 (1988). https://doi.org/10.1007/BF00116871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116871

Keywords

Navigation