Skip to main content
Log in

Design, optimization, and construction of a dc SQUID with complete flux transformer circuits

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The design of a complete dc SQUID with a flux transformer input circuit is discussed. The flux coupling circuits introduce a substantial capacitance across the SQUID and give rise to many resonances which may couple strongly to the SQUID dynamics. Both effects lead to multiple modes in the SQUID dynamics and consequently to excess noise. For a low-noise SQUID with smooth characteristics, our analysis and practical considerations suggest signal coupling via an intermediary transformer. This method allows simultaneous optimization of the SQUID parameters, minimizing the parasitic capacitance, control over the resonances, and good inductance matching to practical magnetometer coils. A model is developed to optimize the structure: it describes the whole circuit with the help of a suitably modified autonomous SQUID, provided that the system is free from multiple modes due to resonances or large parasitic capacitance. Following these design principles, we have built a dc SQUID, primarily for use in biomagnetic research, but also well suited for other applications. The fabrication of the SQUID and the high-quality electronics especially suitable for multiple-SQUID devices is presented. The SQUIDs showed smooth characteristics, and the lowest measured noise of our complete SQUID is % MathType!MTEF!2!1!+-% feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaac6% cacaaIZaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaa% iAdaaaGccqqHMoGrdaWgaaWcbaGaaGimaiaac+caaeqaaOWaaOaaae% aacaWGibGaamOEaaWcbeaaaaa!428B!$1.3 \times 10^{ - 6} \Phi _{0/} \sqrt {Hz} $, indicating the success of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Clarke, Physica 126B, 441 (1984).

    Google Scholar 

  2. C. D. Tesche, K. H. Brown, A. C. Callegari, M. M. Chen, J. H. Greiner, H. C. Jones, M. B. Kelchen, K. K. Kim, A. W. Kleinsasser, H. A. Notarys, G. Proto, R. H. Wang, and T. Yogi, IEEE Trans. Magn. MAG-21, 1032 (1985).

    Google Scholar 

  3. C. M. Pegrum, D. Hutson, G. B. Donaldson, and A. Tugwell, IEEE Trans. Magn. MAG-21, 1036 (1985).

    Google Scholar 

  4. T. Noguchi, N. Ohkawa, and K. Hamanaka, in SQUID'85, Superconducting Quantum Interference Devices and Their Applications, H. D. Hahlbohm and H. Lübbig, eds. (Walter de Gruyter, Berlin, 1985), p. 761.

    Google Scholar 

  5. B. Muhlfelder, J. A. Beall, M. W. Cromar, and R. H. Ono, Appl. Phys. Lett. 49, 1118 (1986).

    Google Scholar 

  6. M. Nakanishi, M. Koyanagi, S. Kosaka, A. Shoji, M. Ayoagi, F. Shinoki, H. Nakagawa, S. Takada, N. Kasai, H. Kado, and T. Endo, in Extended Abstracts of the 1987 International Superconductivity Electronics Conference ISEC'87 (Japan Society of Applied Physics, Tokyo, 1987), p. 265.

    Google Scholar 

  7. Y. Katoh, H. Asano, K. Tanabe, and O. Michikami, in Extended Abstracts of the 1987 International Superconductivity Electronics Conference ISEC'87 (Japan Society of Applied Physics, Tokyo, 1987), p. 277.

    Google Scholar 

  8. C. D. Tesche, J. Low Temp. Phys. 47, 385 (1982).

    Google Scholar 

  9. M. Gershenson, R. Hastings, R. Schneider, M. Sweeny, and E. Sorensen, IEEE Trans. Magn. MAG-19, 2058 (1983).

    Google Scholar 

  10. K. Enpuku, K. Sueoka, K. Yoshida, and F. Irie, J. Appl. Phys. 57, 1691 (1985).

    Google Scholar 

  11. D. Drung and W. Jutzi, in SQUID'85, Superconducting Quantum Interference Devices and Their Applications, H. D. Hahlbohm and H. Lübbig, eds. (Walter de Gruyter, Berlin, 1985), p. 807.

    Google Scholar 

  12. H. Seppä and T. Ryhänen, IEEE Trans. Magn. MAG-23, 1083 (1987).

    Google Scholar 

  13. C. Hilbert and J. Clarke, J. Low Temp. Phys. 61, 237 (1985).

    Google Scholar 

  14. P. Carelli and V. Foglietti, IEEE Trans. Magn. MAG-19, 299 (1983).

    Google Scholar 

  15. P. Carelli and V. Foglietti, IEEE Trans. Magn. MAG-21, 424 (1985).

    Google Scholar 

  16. B. Muhlfelder, J. A. Beall, M. W. Cromar, R. H. Ono, and W. W. Johnson, IEEE Trans. Magn. MAG-21, 427 (1985).

    Google Scholar 

  17. J. Knuutila, A. Ahonen, and C. Tesche, J. Low Temp. Phys. 68, 269 (1987).

    Google Scholar 

  18. K. Enpuku, T. Muta, K. Yoshida, and F. Irie, J. Appl. Phys. 58, 1916 (1985).

    Google Scholar 

  19. K. Enpuku and K. Yoshida, J. Appl. Phys. 59, 1714 (1986).

    Google Scholar 

  20. K. Enpuku, K. Yoshida, and S. Kohjiro, J. Appl. Phys. 60, 4218 (1986).

    Google Scholar 

  21. C. D. Tesche and J. Clarke, J. Low Temp. Phys. 29, 301 (1977).

    Google Scholar 

  22. V. J. de Waal, P. Schrijner, and R. Llurba, J. Low Temp. Phys. 54, 215 (1984).

    Google Scholar 

  23. V. J. de Waal, T. M. Klapwijk, and P. van den Hamer, J. Low Temp. Phys. 53, 287 (1983).

    Google Scholar 

  24. J. A. Ketoja, J. Kurkijärvi, T. Ryhänen, and H. Seppä, Phys. Rev. B 35, 404 (1987).

    Google Scholar 

  25. D. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, New York, 1972).

    Google Scholar 

  26. J. Knuutila, M. Kajola, R. Mutikainen, and J. Salmi, in Extended Abstracts of the 1987 International Superconductivity Electronics Conference ISEC'87 (Japan Society of Applied Physics, Tokyo, 1987), p. 261.

    Google Scholar 

  27. R. E. Joynson, C. A. Neugebauer, and J. R. Rairden, J. Vac. Sci. Technol. 4, 171 (1967).

    Google Scholar 

  28. R. F. Broom, S. I. Raider, A. Oosenbrug, R. E. Drake, and W. Walter, IEEE Trans. Electron Dev. ED-27, 1998 (1980).

    Google Scholar 

  29. V. O. Kelhä, J. M. Pukki, R. S. Peltonen, A. A. Penttinen, R. J. Ilmoniemi, and J. J. Heino, IEEE Trans. Magn. MAG-18, 260 (1982).

    Google Scholar 

  30. J. M. Jaycox and M. B. Ketchen, IEEE Trans. Magn. MAG-17, 400 (1981).

    Google Scholar 

  31. M. B. Ketchen, J. Appl. Phys. 58, 4322 (1985).

    Google Scholar 

  32. W. H. Chang, J. Appl. Phys. 50, 8129 (1979).

    Google Scholar 

  33. W. H. Chang, J. Appl. Phys. 52, 1417 (1981).

    Google Scholar 

  34. C. P. Wen, IEEE Trans. Microwave Theory Techn. MTT-17, 1087 (1969).

    Google Scholar 

  35. M. B. Ketchen, IEEE Trans. Magn. MAG-17, 387 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knuutila, J., Kajola, M., Seppä, H. et al. Design, optimization, and construction of a dc SQUID with complete flux transformer circuits. J Low Temp Phys 71, 369–392 (1988). https://doi.org/10.1007/BF00116869

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116869

Keywords

Navigation