Machine Learning

, Volume 3, Issue 4, pp 253–259 | Cite as

Toward a unified science of machine learning

  • Pat Langley


  1. Belew, R. K., & Forrest, S. (1988). Learning and programming in classifier systems.Machine Learning,3, 193–223.Google Scholar
  2. Clark, P., & Niblett, T. (1989). The CN2 induction algorithm.Machine Learning,3, 261–283.Google Scholar
  3. Collins, A., & Michalski, R. S. (in press). The logic of plausible reasoning: A core theory.Cognitive Science.Google Scholar
  4. Dietterich, T. G. (1986). Learning at the knowledge level.Machine Learning.1, 287–316.Google Scholar
  5. Drastal, G., & Raatz, S. (1988).Empirical results on learning in au abstraction space (Technical Report DCS-TR-248). New Brunswick, NJ: Rutgers University, Department of Computer Science.Google Scholar
  6. Ellman, T. (1988). Approximate theory formation: An explanation-based approach.Proceedings of the Seventh National Conference on Artificial Intelligence (pp. 570–574). Minneapolis, MN: Morgan Kaufmann.Google Scholar
  7. Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering.Machine Learning,2, 139–172.Google Scholar
  8. Gennari, J. H., Langley, P., & Fisher, D. H. (in press). Models of incremental concept formation.Artificial Intelligence.Google Scholar
  9. Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's model.Artificial Intelligence,36, 177–221.Google Scholar
  10. Iba, W., Wogulis, J., & Langley, P. (1988). Trading off simplicity and coverage in incremental concept learning.Proceedings of the Fifth International Conference on Machine Learning (pp. 73–79). Ann Arbor, MI: Morgan Kaufmann.Google Scholar
  11. Kibler, D., & Aha, D. W. (1987). Learning representative exemplars of concepts: A case study.Proceedings of the Fourth International Workshop on Machine Learning (pp. 24–30). Irvine. CA: Morgan Kaufmann.Google Scholar
  12. Kibler, D., & Langley, P. (1988). Machine learning as an experimental science.Proceedings of the Third European Working Session on Learning (pp. 81–92). Glasgow, Scotland: Pitman.Google Scholar
  13. Kolodner, J. L. (1983). Maintaining organization in a dynamic long-term memory.Cognitive Science,7, 243–280.Google Scholar
  14. Neves, D. M., & Anderson, J. R. (1981). Knowledge compilation: Mechanisms for the automatization of cognitive skills. In J. R., Anderson (Ed.),Cognitive skills and their acquisition. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  15. Pazzani, M. (1987). Inducing causal and social theories: A prerequisite for explanation-based learning.Proceedings of the Fourth International Workshop on Machine Learning (pp. 230–241). Irvine, CA: Morgan Kaufmann.Google Scholar
  16. Quinlan, J. R. (1986). Induction of decision trees.Machine Learning,1, 81–106.Google Scholar
  17. Schlimmer, J. C. (1987). Incremental adjustment of representations for learning.Proceedings of the Fourth International Workshop on Machine Learning (pp. 79–90). Irvine, CA: Morgan Kaufmann.Google Scholar
  18. Schlimmer, J. C., & Fisher, D. H. (1986). A case study of incremental concept induction.Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 496–501). Philadelphia, PA: Morgan Kaufmann.Google Scholar
  19. Utgoff, P. (1986).Machine learning of inductive bias. Hingham, MA: Kluwer.Google Scholar
  20. Utgoff, P. (1988). Perceptron trees: A case study in hybrid concept representations.Proceedings of the Seventh National Conference on Artificial Intelligence (pp. 601–606). St. Paul. MN: Morgan Kaufmann.Google Scholar
  21. Valiant, L. G. (1984). A theory of the learnable.Communications of the ACM,27, 1134–1142.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Pat Langley
    • 1
  1. 1.University of CaliforniaIrvine

Personalised recommendations