Journal of Low Temperature Physics

, Volume 31, Issue 1–2, pp 33–82 | Cite as

Thermal conductivity of superconductors in the intermediate state: Size effect in a longitudinal lamellar structure

  • J. M. Suter
  • L. Rinderer
Article

The thermal conductivity of type I superconductors has been measured in a well-defined, optically controlled intermediate-state configuration, the so-called longitudinal lamellar structure (LLS). A regular arrangement of alternating normal and superconducting lamellas is obtained in an elongated plate by applying the magnetic field obliquely (following Sharvin) and decreasing it from the critical value. The heat current is set parallel to the lamellas. Due to the peculiar reflection law governing the quasiparticle reflections at a normal-superconductor interphase boundary, the thermal conductivity of the LLS is reduced when the electronic mean free path is larger than or comparable to the width of the lamellas. As first pointed out by Andreev, the reflection occurs with vector-momentum conservation, and only the quasiparticles moving nearly parallel to the lamellas can transport heat efficiently. The corresponding reduction of the thermal conductivity is a size effect.

Systematic measurements of the thermal conductivity of the LLS in high-purity lead and tin are interpreted in terms of the size-effect model. The parameters of the model were experimentally determined in a preliminary study, to enable an unambiguous comparison with the theory. In particular, the geometrical aspects of the structures were studied using a magnetooptical technique. Interesting results on the characteristics of the LLS were obtained. The thermal conductivity data on lead essentially confirm the size-effect description. In lead below 4.2 K, heat is conducted much more efficiently by the normal lamellas than by the superconducting ones. In particular, phonon effects in the superconducting phase can be neglected and the results give information on the behavior of the normal-phase quasiparticles. The situation is different for tin, where heat transport by the lamellas of both types takes place, the heat carriers being the electrons (T ≳ 1.6 K). The discrepancy between the predictions of the size-effect model and the observed values in tin are attributed to an oversimplified calculation of the contribution of the superconducting lamellas to the conductivity. A more detailed treatment is needed, but the basic description of the thermal conductivity reduction in terms of the size effect should remain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. K. Hulm, Phys. Rev. 90, 1116 (1953); C. A. Renton, Phil. Mag. 46, 47 (1955).Google Scholar
  2. 2.
    N. V. Zavaritskii, Zh. Eksp. Teor. Fiz. 38, 1673 (1960) [Sov. Phys.—JETP 11, 1207 (1960)].Google Scholar
  3. 3.
    P. Wyder, Phys. Kondens. Materie 3, 292 (1965).Google Scholar
  4. 4.
    K. Mendelssohn and J. L. Olsen, Phys. Rev. 80, 859 (1950).Google Scholar
  5. 5.
    S. J. Laredo and A. B. Pippard, Proc. Camb. Phil. Soc. 51, 368 (1955).Google Scholar
  6. 6.
    F. H. J. Cornish and J. L. Olsen, Helv. Phys. Acta 26, 369 (1953).Google Scholar
  7. 7.
    J. L. Olsen, A. Waldvogel, and P. Wyder, Helv. Phys. Acta 39, 361 (1966).Google Scholar
  8. 8.
    S. Strässler and P. Wyder, Phys. Rev. Lett. 10, 225 (1963).Google Scholar
  9. 9.
    Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. 33, 1341 (1957) [Sov. Phys.—JETP 6, 1031 (1958)].Google Scholar
  10. 10.
    T. E. Faber, Proc. Roy. Soc. Lond. A 248, 460 (1958).Google Scholar
  11. 11.
    F. Haenssler and L. Rinderer, Helv. Phys. Acta 38, 448 (1965).Google Scholar
  12. 12.
    H. Träuble and U. Essmann, Phys. Stat. Sol. 18, 813 (1966).Google Scholar
  13. 13.
    R. P. Huebener, R. T. Kampwirth, and V. A. Rowe, Rev. Sci. Instr. 41, 722(1970).Google Scholar
  14. 14.
    H. Kirchner, Phys. Stat. Sol. (a) 4, 531 (1971).Google Scholar
  15. 15.
    P. Laeng and L. Rinderer, Helv. Phys. Acta 46, 8 (1973).Google Scholar
  16. 16.
    A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys.—JETP 19, 1228 (1964)].Google Scholar
  17. 17.
    A. F. Andreev, Zh. Eksp. Teor. Fiz. 47, 2222 (1964) [Sov. Phys.—JETP 20, 1490 (1965)].Google Scholar
  18. 18.
    A. J. Walton, Proc. Roy. Soc. Lond. A 289, 377 (1965).Google Scholar
  19. 19.
    A. F. Andreev, Zh. Eksp. Teor. Fiz. 51, 1510 (1966) [Sov. Phys.—JETP 24, 1019 (1967)].Google Scholar
  20. 20.
    I. L. Landau, Zh. Eksp. Teor. Fiz. Pisma 11, 437 (1970) [Sov. Phys.—JETP Lett. 11, 295 (1970)].Google Scholar
  21. 21.
    A. B. Pippard, J. G. Shepherd, and D. A. Tindall, Proc. Roy. Soc. Lond. A 324, 17 (1971).Google Scholar
  22. 22.
    A. F. Andreev, Zh. Eksp. Teor. Fiz. 49, 655 (1965) [Sov. Phys.—JETP 22, 455 (1966)].Google Scholar
  23. 23.
    N. V. Zavaritskii, Sov. Phys—JETP Lett. 2, 106 (1965).Google Scholar
  24. 24.
    W. J. Tomasch, Phys. Rev. Lett. 15, 672 (1965).Google Scholar
  25. 25.
    W. J. Tomasch, in Tunneling Phenomena in Solids, E. Burstein and S. Lundqvist, eds. (Plenum Press, New York, 1969), Chapter 23.Google Scholar
  26. 26.
    I. P. Krylov and Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. Pisma 12, 102 (1970) [Sov. Phys.—JETP Lett. 12, 71 (1970)].Google Scholar
  27. 27.
    I. P. Krylov and Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. 64, 946 (1973) [Sov. Phys.—JETP 37, 481 (1973)].Google Scholar
  28. 28.
    J. M. Suter, F. Rothen, and L. Rinderer, J. Low Temp. Phys. 20, 429 (1975).Google Scholar
  29. 29.
    J. M. Suter and L. Rinderer, in Proc. of the 14th Int. Conf. on Low Temperature Physics, M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 2, p. 133.Google Scholar
  30. 30.
    L. D. Landau, Phys. Z. Sowjet. 11, 129 (1937).Google Scholar
  31. 31.
    J. Demers and A. Griffin, Can. J. Phys. 49, 285 (1971).Google Scholar
  32. 32.
    L. P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961).Google Scholar
  33. 33.
    J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113, 982 (1959).Google Scholar
  34. 34.
    B. Knecht, J. M. Suter, and L. Rinderer, J. Low Temp. Phys. 22, 673 (1976).Google Scholar
  35. 35.
    A. C. Anderson, Rev. Sci. Instr. 39, 605 (1968).Google Scholar
  36. 36.
    J. B. Sousa, Cryogenics 8, 105 (1968).Google Scholar
  37. 37.
    J. R. Clement and E. H. Quinnel, Rev. Sci. Instr. 23, 213 (1952).Google Scholar
  38. 38.
    J. M. Suter, P. Laeng, and L. Rinderer, Helv. Phys. Acta 46, 5 (1973).Google Scholar
  39. 39.
    P. Laeng, F. Haenssler, and L. Rinderer, J. Low Temp. Phys. 4, 533 (1971).Google Scholar
  40. 40.
    D. E. Farrell, R. P. Huebener, and R. T. Kampwirth, Solid State Comm. 11, 1647 (1972).Google Scholar
  41. 41.
    P. Laeng and L. Rinderer, to be published.Google Scholar
  42. 42.
    A. L. Schawlow, Phys. Rev. 101, 573 (1956).Google Scholar
  43. 43.
    R. G. Chambers, Proc. Roy. Soc. Lond. A 215, 481 (1952).Google Scholar
  44. 44.
    J. J. Krempasky and D. E. Farrell, Phys. Rev. B 9, 2894 (1974).Google Scholar
  45. 45.
    I. L. Landau and Yu. V. Sharvin, Phys. Rev. B 13, 1359 (1976).Google Scholar
  46. 46.
    E. M. Lifshitz and Yu. V. Sharvin, Dokl. Akad. Nauk. USSR 79, 783 (1951).Google Scholar
  47. 47.
    A. Bodmer, Phys. Stat. Sol. (a) 19, 513 (1973).Google Scholar
  48. 48.
    A. Bodmer, U. Essmann, and H. Träuble, Phys. Stat. Sol. (a) 13, 471 (1972).Google Scholar
  49. 49.
    J. A. Osborn, Phys. Rev. 67, 351 (1945).Google Scholar
  50. 50.
    F. Haenssler and L. Rinderer, Helv. Phys. Acta 40, 659 (1967).Google Scholar
  51. 51.
    J. Higgins, S. H. Tang, and P. A. Schroeder, J. Low Temp. Phys. 24, 519 (1976).Google Scholar
  52. 52.
    I. P. Krylov, I. L. Bronevoi, and Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. Pisma 19, 588 (1974) [Sov. Phys.—JETP Lett. 19, 306 (1974)].Google Scholar
  53. 53.
    A. M. Guénault, Proc. Roy. Soc. Lond. A 262, 420 (1961).Google Scholar
  54. 54.
    J. E. Gueths, C. A. Reynolds, and M. A. Mitchell, Phys. Rev. 150, 346 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • J. M. Suter
    • 1
  • L. Rinderer
    • 1
  1. 1.Institut de Physique Expérimentale, Université de LausanneLausanne-DorignySwitzerland

Personalised recommendations