Skip to main content
Log in

Thermal conductivity of superconductors in the intermediate state: Size effect in a longitudinal lamellar structure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The thermal conductivity of type I superconductors has been measured in a well-defined, optically controlled intermediate-state configuration, the so-called longitudinal lamellar structure (LLS). A regular arrangement of alternating normal and superconducting lamellas is obtained in an elongated plate by applying the magnetic field obliquely (following Sharvin) and decreasing it from the critical value. The heat current is set parallel to the lamellas. Due to the peculiar reflection law governing the quasiparticle reflections at a normal-superconductor interphase boundary, the thermal conductivity of the LLS is reduced when the electronic mean free path is larger than or comparable to the width of the lamellas. As first pointed out by Andreev, the reflection occurs with vector-momentum conservation, and only the quasiparticles moving nearly parallel to the lamellas can transport heat efficiently. The corresponding reduction of the thermal conductivity is a size effect.

Systematic measurements of the thermal conductivity of the LLS in high-purity lead and tin are interpreted in terms of the size-effect model. The parameters of the model were experimentally determined in a preliminary study, to enable an unambiguous comparison with the theory. In particular, the geometrical aspects of the structures were studied using a magnetooptical technique. Interesting results on the characteristics of the LLS were obtained. The thermal conductivity data on lead essentially confirm the size-effect description. In lead below 4.2 K, heat is conducted much more efficiently by the normal lamellas than by the superconducting ones. In particular, phonon effects in the superconducting phase can be neglected and the results give information on the behavior of the normal-phase quasiparticles. The situation is different for tin, where heat transport by the lamellas of both types takes place, the heat carriers being the electrons (T ≳ 1.6 K). The discrepancy between the predictions of the size-effect model and the observed values in tin are attributed to an oversimplified calculation of the contribution of the superconducting lamellas to the conductivity. A more detailed treatment is needed, but the basic description of the thermal conductivity reduction in terms of the size effect should remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Hulm, Phys. Rev. 90, 1116 (1953); C. A. Renton, Phil. Mag. 46, 47 (1955).

    Google Scholar 

  2. N. V. Zavaritskii, Zh. Eksp. Teor. Fiz. 38, 1673 (1960) [Sov. Phys.—JETP 11, 1207 (1960)].

    Google Scholar 

  3. P. Wyder, Phys. Kondens. Materie 3, 292 (1965).

    Google Scholar 

  4. K. Mendelssohn and J. L. Olsen, Phys. Rev. 80, 859 (1950).

    Google Scholar 

  5. S. J. Laredo and A. B. Pippard, Proc. Camb. Phil. Soc. 51, 368 (1955).

    Google Scholar 

  6. F. H. J. Cornish and J. L. Olsen, Helv. Phys. Acta 26, 369 (1953).

    Google Scholar 

  7. J. L. Olsen, A. Waldvogel, and P. Wyder, Helv. Phys. Acta 39, 361 (1966).

    Google Scholar 

  8. S. Strässler and P. Wyder, Phys. Rev. Lett. 10, 225 (1963).

    Google Scholar 

  9. Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. 33, 1341 (1957) [Sov. Phys.—JETP 6, 1031 (1958)].

    Google Scholar 

  10. T. E. Faber, Proc. Roy. Soc. Lond. A 248, 460 (1958).

    Google Scholar 

  11. F. Haenssler and L. Rinderer, Helv. Phys. Acta 38, 448 (1965).

    Google Scholar 

  12. H. Träuble and U. Essmann, Phys. Stat. Sol. 18, 813 (1966).

    Google Scholar 

  13. R. P. Huebener, R. T. Kampwirth, and V. A. Rowe, Rev. Sci. Instr. 41, 722(1970).

    Google Scholar 

  14. H. Kirchner, Phys. Stat. Sol. (a) 4, 531 (1971).

    Google Scholar 

  15. P. Laeng and L. Rinderer, Helv. Phys. Acta 46, 8 (1973).

    Google Scholar 

  16. A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys.—JETP 19, 1228 (1964)].

    Google Scholar 

  17. A. F. Andreev, Zh. Eksp. Teor. Fiz. 47, 2222 (1964) [Sov. Phys.—JETP 20, 1490 (1965)].

    Google Scholar 

  18. A. J. Walton, Proc. Roy. Soc. Lond. A 289, 377 (1965).

    Google Scholar 

  19. A. F. Andreev, Zh. Eksp. Teor. Fiz. 51, 1510 (1966) [Sov. Phys.—JETP 24, 1019 (1967)].

    Google Scholar 

  20. I. L. Landau, Zh. Eksp. Teor. Fiz. Pisma 11, 437 (1970) [Sov. Phys.—JETP Lett. 11, 295 (1970)].

    Google Scholar 

  21. A. B. Pippard, J. G. Shepherd, and D. A. Tindall, Proc. Roy. Soc. Lond. A 324, 17 (1971).

    Google Scholar 

  22. A. F. Andreev, Zh. Eksp. Teor. Fiz. 49, 655 (1965) [Sov. Phys.—JETP 22, 455 (1966)].

    Google Scholar 

  23. N. V. Zavaritskii, Sov. Phys—JETP Lett. 2, 106 (1965).

    Google Scholar 

  24. W. J. Tomasch, Phys. Rev. Lett. 15, 672 (1965).

    Google Scholar 

  25. W. J. Tomasch, in Tunneling Phenomena in Solids, E. Burstein and S. Lundqvist, eds. (Plenum Press, New York, 1969), Chapter 23.

    Google Scholar 

  26. I. P. Krylov and Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. Pisma 12, 102 (1970) [Sov. Phys.—JETP Lett. 12, 71 (1970)].

    Google Scholar 

  27. I. P. Krylov and Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. 64, 946 (1973) [Sov. Phys.—JETP 37, 481 (1973)].

    Google Scholar 

  28. J. M. Suter, F. Rothen, and L. Rinderer, J. Low Temp. Phys. 20, 429 (1975).

    Google Scholar 

  29. J. M. Suter and L. Rinderer, in Proc. of the 14th Int. Conf. on Low Temperature Physics, M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 2, p. 133.

    Google Scholar 

  30. L. D. Landau, Phys. Z. Sowjet. 11, 129 (1937).

    Google Scholar 

  31. J. Demers and A. Griffin, Can. J. Phys. 49, 285 (1971).

    Google Scholar 

  32. L. P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961).

    Google Scholar 

  33. J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113, 982 (1959).

    Google Scholar 

  34. B. Knecht, J. M. Suter, and L. Rinderer, J. Low Temp. Phys. 22, 673 (1976).

    Google Scholar 

  35. A. C. Anderson, Rev. Sci. Instr. 39, 605 (1968).

    Google Scholar 

  36. J. B. Sousa, Cryogenics 8, 105 (1968).

    Google Scholar 

  37. J. R. Clement and E. H. Quinnel, Rev. Sci. Instr. 23, 213 (1952).

    Google Scholar 

  38. J. M. Suter, P. Laeng, and L. Rinderer, Helv. Phys. Acta 46, 5 (1973).

    Google Scholar 

  39. P. Laeng, F. Haenssler, and L. Rinderer, J. Low Temp. Phys. 4, 533 (1971).

    Google Scholar 

  40. D. E. Farrell, R. P. Huebener, and R. T. Kampwirth, Solid State Comm. 11, 1647 (1972).

    Google Scholar 

  41. P. Laeng and L. Rinderer, to be published.

  42. A. L. Schawlow, Phys. Rev. 101, 573 (1956).

    Google Scholar 

  43. R. G. Chambers, Proc. Roy. Soc. Lond. A 215, 481 (1952).

    Google Scholar 

  44. J. J. Krempasky and D. E. Farrell, Phys. Rev. B 9, 2894 (1974).

    Google Scholar 

  45. I. L. Landau and Yu. V. Sharvin, Phys. Rev. B 13, 1359 (1976).

    Google Scholar 

  46. E. M. Lifshitz and Yu. V. Sharvin, Dokl. Akad. Nauk. USSR 79, 783 (1951).

    Google Scholar 

  47. A. Bodmer, Phys. Stat. Sol. (a) 19, 513 (1973).

    Google Scholar 

  48. A. Bodmer, U. Essmann, and H. Träuble, Phys. Stat. Sol. (a) 13, 471 (1972).

    Google Scholar 

  49. J. A. Osborn, Phys. Rev. 67, 351 (1945).

    Google Scholar 

  50. F. Haenssler and L. Rinderer, Helv. Phys. Acta 40, 659 (1967).

    Google Scholar 

  51. J. Higgins, S. H. Tang, and P. A. Schroeder, J. Low Temp. Phys. 24, 519 (1976).

    Google Scholar 

  52. I. P. Krylov, I. L. Bronevoi, and Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. Pisma 19, 588 (1974) [Sov. Phys.—JETP Lett. 19, 306 (1974)].

    Google Scholar 

  53. A. M. Guénault, Proc. Roy. Soc. Lond. A 262, 420 (1961).

    Google Scholar 

  54. J. E. Gueths, C. A. Reynolds, and M. A. Mitchell, Phys. Rev. 150, 346 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported financially by the Fonds National Suisse de la Recherche Scientifique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suter, J.M., Rinderer, L. Thermal conductivity of superconductors in the intermediate state: Size effect in a longitudinal lamellar structure. J Low Temp Phys 31, 33–82 (1978). https://doi.org/10.1007/BF00116229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116229

Keywords

Navigation