Skip to main content
Log in

Quantum diffusion in solid H2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A study of quantum diffusion in solid H2 is reported based on the measurement of the pressure versus time at constant volume. Solid samples with ortho-H2 concentrations between 0.01 and 0.025 were investigated over the temperature range 0.4–4 K. The characteristic time constant Τ for ortho pair formation or breaking up and the resulting pressure changes are presented and compared with other experiments and with theory. The pressure change calculated from a simple statistical model is in good agreement with the experiment and this leads to the conclusion that both in-plane and out-of-plane pairs appear to form (or break up) at the same rate, at least in our concentration range. The experiments also suggest that the concentration dependence of Τ is in qualitative agreement with theory, which, however, makes no predictions on the temperature dependence. Comparison with other experiments also suggests that Τ might be a function of strains in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Amstutz, J. R. Thompson, and H. Meyer, Phys. Rev. Lett. 21, 1175 (1968).

    Google Scholar 

  2. R. Oyarzun and J. Van Kranendonk, Can. J. Phys. 50, 1494 (1972).

    Google Scholar 

  3. J. Van Kranendonk (private communication).

  4. S. A. Boggs and H. L. Welsh, Can J. Phys. 51, 1910 (1973).

    Google Scholar 

  5. B. J. Roffey, S. A. Boggs, and H. L. Welsh, Can. J. Phys. 52, 2451 (1974).

    Google Scholar 

  6. W. N. Hardy, A. J. Berlinsky, and A. B. Harris, Can. J. Phys. 55, 1150 (1977).

    Google Scholar 

  7. R. Schweitzer, S. Washburn, and H. Meyer, Phys. Rev. Lett. 40, 1035 (1978).

    Google Scholar 

  8. D. Ramm, Ph.D. thesis, Duke University (1969) (unpublished).

  9. J. F. Jarvis, H. Meyer, and D. Ramm, Phys. Rev. 178, 1461 (1969).

    Google Scholar 

  10. H. Meyer, Phys. Rev. 187, 1173 (1969).

    Google Scholar 

  11. W. N. Hardy and J. R. Gaines, Phys. Rev. Lett. 19, 1417 (1967).

    Google Scholar 

  12. R. Schweizer, S. Washburn, and H. Meyer, J. Low Temp. Phys. 37, 290 (1979).

    Google Scholar 

  13. A. B. Harris, A. J. Berlinsky, and H. Meyer, Phys. Rev. B 7, 4720 (1973) and references therein.

    Google Scholar 

  14. W. N. Hardy and A. J. Berlinsky, Phys. Rev. Lett. 34, 1520 (1975).

    Google Scholar 

  15. H. Miyagi, Prog. Theor. Phys. (Kyoto) 40, 1448 (1968); also A. B. Harris, unpublished calculations (1968).

    Google Scholar 

  16. V. B. Kokshenev and M. A. Strzhemechnyi, Sov. J. Low Temp. Phys. 2, 529 (1976).

    Google Scholar 

  17. J. F. Jarvis, D. Ramm, and H. Meyer, Phys. Rev. 170, 320 (1968).

    Google Scholar 

  18. E. R. Grilly, Rev. Sci. Instr. 24, 72 (1953).

    Google Scholar 

  19. V. A. Popov, V. B. Kokshenev, V. G. Manzhelii, M. A. Strzhemechnyi, and E. I. Voitovich, J. Low Temp. Phys. 26, 479 (1977).

    Google Scholar 

  20. S. Washburn, R. Schweizer, and H. Meyer, J. Low Temp. Phys., this issue, following paper.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the National Science Foundation.

Duke Medical School, Duke University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramm, D., Meyer, H. Quantum diffusion in solid H2 . J Low Temp Phys 40, 173–186 (1980). https://doi.org/10.1007/BF00115989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115989

Keywords

Navigation