Skip to main content
Log in

Superconductivity in Cu-V-Si alloys

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The superconducting properties of copper ternary alloys containing small amounts of vanadium and silicon have been investigated. The wire samples of three alloys—Cu90V7.5Si2.5, Cu88V9Si3, and Cu84V12Si4—show a resistive superconducting transition around 17 K, the characteristic transition temperature of the A15 compound V3Si, followed by a plateau and a second transition between 5 and 10 K. The resistivity, however, does not drop to zero down to 2.5 K. The maximum drop in resistivity is observed for the alloy containing minimum amounts of vanadium and silicon. Complete super-conductivity is absent in these alloys for two reasons. First the effective superconducting volume fraction in these alloys is well below the threshold value obtained by either the effective medium theory or the site percolation theory for solid conduction. Second, the superconducting phase does not precipitate in a fine structure in the matrix and a strong proximity effect does not operate. Experimental evidence confirms the formation of brittle phase V3Si in the cast alloys which does not get elongated to the same extent as the matrix when rolled or drawn. This reduces the effective volume fraction of V3Si in the drawn wires. Annealing of these wires causes the superconducting particles to coalesce and grow in size, increasing the interparticle distances to the detriment of superconductivity in these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. Tsuei, Science 180, 57 (1973).

    Google Scholar 

  2. C. C. Tsuci, M. Suenaga, and W. B. Sampson, Appl. Phys. Lett. 25, 318 (1974).

    Google Scholar 

  3. R. G. Sharma and N. E. Alekseevskii, J. Phys. D 8, 1783 (1974).

    Google Scholar 

  4. J. P. Harbison and J. Bevk, J. Appl. Phys. 48, 5180 (1977).

    Google Scholar 

  5. A. Nagata, O. Izumi, K. Noto, and H. Hirayama, J. Mat. Sci. 13, 731 (1978).

    Google Scholar 

  6. R. Bormann, L. Schultz, and H. C. Freyhardt, Appl. Phys. Lett. 32, 79 (1978).

    Google Scholar 

  7. R. Roberge, S. Foner, E. J. McNiff, Jr., and B. B. Schwartz, Appl. Phys. Lett. 34, 111 (1979).

    Google Scholar 

  8. A. Nagata, H. Hirayama, K. Noto, and O. Izumi, J. Appl. Phys. 48, 5175 (1977).

    Google Scholar 

  9. M. Hensen, Constitution of Binary Alloys, 2nd ed. (McGraw-Hill, New York), p. 582.

  10. A. Davidson and M. Tinkham, Phys. Rev. B 13, 3261 (1976).

    Google Scholar 

  11. Scott Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Google Scholar 

  12. V. K. S. Shante and Scott Kirkpatrick, Adv. Phys. 20, 325 (1971).

    Google Scholar 

  13. R. Zallen and H. Scher, Phys. Rev. B 4, 4471 (1971).

    Google Scholar 

  14. C. C. Tsuei and L. R. Newkirk, J. Mat. Sci. 8, 1307 (1973).

    Google Scholar 

  15. R. Roberge and J. L. Fihey, J. Appl. Phys. 48, 1327 (1977).

    Google Scholar 

  16. J. D. Livingston, J. Mat. Sci. 12, 1759 (1977).

    Google Scholar 

  17. C. J. Lobb, M. Tinkham, and W. J. Skocpol, Solid State Comm. 27, 1273 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R.G., Krishna, M.M. & Narlikar, A.V. Superconductivity in Cu-V-Si alloys. J Low Temp Phys 40, 105–115 (1980). https://doi.org/10.1007/BF00115985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115985

Keywords

Navigation