Skip to main content
Log in

Proximity electron tunneling spectroscopy I. Experiments on Nb

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A quantitative proximity electron tunneling spectroscopy (PETS) is demonstrated for the study of strong coupling superconductors which do not form suitable insulating oxides for conventional McMillan-Rowell tunneling spectroscopy. Proximity junctions of the form C-Al2O3-Al/S are employed, with Al thickness d N ≤ 100 ». Here S is the superconductor of interest and C is any convenient counterelectrode. The physical basis for the method, experimental techniques, and data obtained from foils of Nb are presented. The results for Nb include the energy-dependent pair potential δS(E), the renormalization function Z(E), effective phonon spectrum α 2 F(Ω), electron-phonon coupling constant λ, and Coulomb pseudopotential Μ*. A full discussion of the underlying theory and details of the methods of analysis employed to obtain, in addition, the pair potential of the Al proximity layer are contained in a following paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. McMillan and J. M. Rowell, in Superconductivity, Vol. 1, R. D. Parks, ed. (Dekker, New York, 1969), p. 561.

    Google Scholar 

  2. W. M. McMillan, Phys. Rev. 167, 331 (1968).

    Google Scholar 

  3. P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

    Google Scholar 

  4. W. N. Hubin and D. M. Ginsberg, Phys. Rev. 188, 716 (1969).

    Google Scholar 

  5. E. L. Wolf, Rep. Prog. Phys. 41, 1439 (1978).

    Google Scholar 

  6. Bennett Robinson, T. H. Geballe, and J. M. Rowell, in Superconductivity in d- and f-Band Metals, D. H. Douglass, ed. (Plenum, New York, 1976), p. 381.

    Google Scholar 

  7. E. L. Wolf and J. Zasadzinski, Phys. Lett. 62A, 165 (1977); Physics of Transition Metals (Institute of Physics Conf. Ser. No. 39) (The Institute of Physics, Bristol, England, 1978), p. 666.

    Google Scholar 

  8. E. L. Wolf, J. Zasadzinski, J. W. Osmun, and G. B. Arnold, Solid State Comm. 31, 321 (1979).

    Google Scholar 

  9. K. Knorr and J. D. Leslie, Solid State Comm. 12, 615 (1973).

    Google Scholar 

  10. N. F. Mott, Trans. Faraday Soc. 43, 429 (1947).

    Google Scholar 

  11. Gerald B. Arnold, Phys. Rev. B 18, 1076 (1978).

    Google Scholar 

  12. H. Meissner, Phys. Rev. 117, 672 (1960).

    Google Scholar 

  13. W. L. McMillan, Phys. Rev. 175, 559 (1968).

    Google Scholar 

  14. P. G. DeGennes, Rev. Mod. Phys. 36, 225 (1964).

    Google Scholar 

  15. A. F. Andreev, Zh. Eksp. Tear. Fiz. 46, 1823 (1964) [Sov. Phys.—JETP 19, 1228 (1964)].

    Google Scholar 

  16. C. J. Adkins and B. W. Kington, Phil. Mag. 13, 971 (1966).

    Google Scholar 

  17. J. J. Hauser, Physics 2, 247 (1966); J. J. Hauser, D. D. Bacon, and W. H. Haemmerle, Phys. Rev. 151, 296 (1966).

    Google Scholar 

  18. J. M. Rowell and W. L. McMillan, Phys. Rev. Lett. 16, 453 (1966).

    Google Scholar 

  19. J. M. Rowell, Phys. Rev. Lett. 30, 167 (1973).

    Google Scholar 

  20. P. W. Wyatt, R. C. Barker, and A. Yelon, Phys. Rev. B 6, 4169 (1972).

    Google Scholar 

  21. L. Y. L. Shen, in Superconductivity in d- and f-Band Metals, D. H. Douglass, ed. (AIP Conference Proceedings, No. 4) (American Institute of Physics, New York, 1972), p. 31.

    Google Scholar 

  22. P. M. Chaikin and P. K. Hansma, Phys. Rev. Lett. 36, 1552 (1976).

    Google Scholar 

  23. P. M. Chaikin, G. Arnold, and P. K. Hansma, J. Low Temp. Phys. 26, 229 (1977); B. F. Donovan-Vojtovic, and P. M. Chaikin, Solid State Comm. 31, 563 (1979).

    Google Scholar 

  24. W. L. McMillan, Phys. Rev. 175, 537 (1968).

    Google Scholar 

  25. T. Wolfram, Phys. Rev. 170, 481 (1968).

    Google Scholar 

  26. P. Nedellec, L. Dumoulin, and E. Guyon, J. Low Temp. Phys. 24, 663 (1976).

    Google Scholar 

  27. Z. Ovadyahu and O. Entin-Wohlman, J. Phys. F 9, 2091 (1979).

    Google Scholar 

  28. Stuart Bermon and C. K. So, Phys. Rev. B 17, 4256 (1978).

    Google Scholar 

  29. D. K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys. Rev. 149, 231 (1966).

    Google Scholar 

  30. Y. Nakagawa and A. D. B. Woods, Phys. Rev. Lett. 11, 271 (1963); R. I. Sharp, J. Phys. C 2, 421 (1969).

    Google Scholar 

  31. D. P. Karim, J. B. Ketterson, and G. W. Crabtree, J. Low Temp. Phys. 30, 389 (1978); G. W. Crabtree, D. H. Dye, D. P. Karim, and D. D. Koelling, Phys. Rev. Lett. 42, 390 (1979).

    Google Scholar 

  32. B. N. Harmon and S. K. Sinha, Phys. Rev. B 16, 3919 (1977).

    Google Scholar 

  33. M. Peter, J. Ashkenazi, and M. Dacorogna, Helv. Phys. Acta 50, 267 (1977).

    Google Scholar 

  34. W. H. Butler, H. G. Smith, and N. Wakabayashi, Phys. Rev. Lett. 39, 1004 (1977).

    Google Scholar 

  35. W. H. Butler, F. J. Pinski, and P. B. Allen, Phys. Rev. B 19, 3708 (1979).

    Google Scholar 

  36. J. Bostock, V. Diadiuk, W. N. Cheung, K. H. Lo, R. M. Rose, and M. L. A. MacVicar, Phys. Rev. Lett 36, 603 (1976); J. Bostock, K. H. Lo, W. N. Cheung, V. Diadiuk, and M. L. A. MacVicar, in Superconductivity in d- and f-Band Metals, D. H. Douglass, ed. (Plenum, New York, 1976), p. 367; J. Bostock and M. L. A. MacVicar, Phys. Lett. 71A, 373 (1979).

    Google Scholar 

  37. K. Gärtner and A. Hahn, Z. Naturforsch. 31A, 361 (1976); see also B. Schöneich, D. Elefant, P. Otschik, and J. Schumann, Phys. Stat. Sol. B 91, 99 (1979).

    Google Scholar 

  38. R. J. Lederich and J. J. Bellina, Jr., I. Opt. Soc. Am. 60, 1697 (1970); J. J. Bellina Jr., R. J. Lederich, and J. E. O'Neal, J. Appl. Phys. 43, 287 (1972); Warren DeSorbo, Phys. Rev. 132, 107 (1963).

    Google Scholar 

  39. K. E. Gray, Appl. Phys. Lett. 27, 462 (1975).

    Google Scholar 

  40. I. Lindau and W. E. Spicer, J. Appl. Phys. 45, 3720 (1974).

    Google Scholar 

  41. M. Grundner and J. Halbritter, J. Appl. Phys. (1979); J. Halbritter. Z. Physik B 31, 19 (1978).

    Google Scholar 

  42. Gerald B. Arnold, J. Zasadzinski, and E. L. Wolf, Phys. Lett. 69A, 136 (1978).

    Google Scholar 

  43. W. J. Tomasch, in Tunneling Phenomena in Solids, E. Burstein and S. Lundqvist, eds. (Plenum, New York, 1969), p. 315.

    Google Scholar 

  44. G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov. Phys.—JETP 11, 696 (1969)].

    Google Scholar 

  45. R. Meservey and P. M. Tedrow, J. Appl. Phys. 42, 51 (1971).

    Google Scholar 

  46. Myron Strongin, Superconductivity in d- and f-Band Metals, D. H. Douglass, ed. (AIP Conf. Series No. 4) (American Institute of Physics, New York, 1972), p. 223.

    Google Scholar 

  47. L. Y. L. Shen, Rev. Sci. Instr. 43, 1301 (1972).

    Google Scholar 

  48. Table 6g-4, American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963), p. 6–121.

  49. W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys. 41, 1915 (1970).

    Google Scholar 

  50. J. Bostock, K. Agyeman, M. H. Frommer, and M. L. A. MacVicar, J. Appl. Phys. 44, 5567 (1973).

    Google Scholar 

  51. E. L. Wolf and R. J. Noer, J. Phys. (Paris) (Coll. C6) 39, C6–454 (1978).

    Google Scholar 

  52. R. Meservey and D. H. Douglass, Phys. Rev. 135, A24 (1964).

    Google Scholar 

  53. Orsay Group on Superconductivity, Phys. Kond. Materie 6, 307 (1967).

    Google Scholar 

  54. E. L. Wolf and R. J, Noer, Solid State Comm. 30, 391 (1979).

    Google Scholar 

  55. J. Bar-Sagi and O. Entin-Wohlman, Solid State Comm. 22, 29 (1977).

    Google Scholar 

  56. W. N. Hubin Tech. Report 182, ARPA SD-131, Dept. of Physics (University of Illinois, Urbana, 1970).

    Google Scholar 

  57. W. H. Butler, H. G. Smith, and N. Wakabayashi, Phys. Rev. Lett. 39, 1004 (1977).

    Google Scholar 

  58. D. G. Walmsley, J. W. Osmun, and E. L. Wolf, Thin Solid Films 62, 61 (1979).

    Google Scholar 

  59. D. Stützle and K. E. Heusler, Z. Phys. Chem. 65, 201 (1969).

    Google Scholar 

  60. J. Bostock, M. L. A. MacVicar, G. B. Arnold, J. Zasadzinski, and E. L. Wolf, in Proc. 3rd Conf. Superconductivity in d- and f-Band Metals (La Jolla, 1979).

  61. E. L. Wolf, J. Zasadzinski, G. B. Arnold, D. F. Moore, J. M. Rowell, and M. R. Beasley, Phys. Rev. B (1 August 1980).

  62. J. Zasadzinski, W. K. Schubert, E. L. Wolf, and G. B. Arnold, in Proc. 3rd Conf. Superconductivity in d- and f-Band Metals (La Jolla, 1979); John Zasadzinski, Ph.D. Thesis, Iowa State University (1980).

  63. R. J. Noer, D. M. Burnell, Z. G. Khim, E. L. Wolf, and G. B. Arnold, Bull. Am. Phys. Soc. 25, 169 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science Division; in part by NSF Grant DMR 77-10549 at Indiana University and at the University of Notre Dame; and by Research Corporation through a Cottrell grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, E.L., Zasadzinski, J., Osmun, J.W. et al. Proximity electron tunneling spectroscopy I. Experiments on Nb. J Low Temp Phys 40, 19–50 (1980). https://doi.org/10.1007/BF00115980

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115980

Keywords

Navigation