Skip to main content
Log in

The diel cycle of carbonyl sulfide in marine surface waters: Field study results and a simple model

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The concentrations of atmospheric and dissolved carbonyl sulfide (COS) were measured during a Lagrangian study aboard the R/V Meteor in the northeast Atlantic Ocean, April/May 1992, and during a campaign on the research platform Nordsee in the German Bight (southeastern North Sea), September 1992. The arithmetic means and standard deviations of the COS saturation ratios were 1.27 ± 0.58 (northeast Atlantic) and 3.23 ± 0.73 (German Bight). Sea surface COS showed a pronounced diel cycle with highest concentrations in the late afternoon and a mean concentration amplitude of about 2. To account for this diel cycle, we analyze our results using a simple empirical model, which includes a zeroth order photoproduction constant, sea surface UV light intensity, and terms for hydrolysis removal and air-sea exchange. Fitted and observed COS concentrations agreed to within11 % (northeast Atlantic) and 14% (German Bight). The in situ COS photoproduction constants were (0.030 ± 0.008) fmol L−1 s−1 W−1 m2 in the northeast Atlantic (n = 8) and (0.17 ± 0.07) fmol L−1 s−1 W−1 m2 in the German Bight (n = 10). After normalization to the cloud cover corrected UV irradiance at 40‡ latitude, we obtained sea surface COS production rates of (0.034 ± 0.017) nmol L−1 d−1 in the northeast Atlantic and (1.62 ± 0.62) nmol L−1 d−1 in the German Bight. Currently available in situ photoproduction rates show a high degree of correlation with the UV absorbance (r 2 = 0.98, n = 4) and fluorescence (r 2 = 0.85, n = 4) of chromophoric dissolved organic matter (CDOM). The regional differences between the COS productivity in the northeast Atlantic Ocean and the German Bight is attributed to the distribution pattern of CDOM optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O. and Ferek, R. J. (1992) Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere. Global Biogeochem. Cycles 6, 175–183.

    Google Scholar 

  • Bandy, A. R., Thornton, D. C., Scott, D. L., Lalevic, M., Levin, E. E., and Driedger, A.R., III (1992) A time series for carbonyl sulfide in the northern hemisphere. J. Atmos. Chem. 14, 527–534.

    Google Scholar 

  • Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O. (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem. Cycles 8, 465–480.

    Google Scholar 

  • Barnes, I., Becker, K. H., and Patroescu, I. (1994) The tropospheric oxidation of dimethyl sulfide: A new source of carbonyl sulfide. Geophys. Res. Lett. 21, 2389–2392.

    Google Scholar 

  • Berger, W. H. (1989) Global maps of ocean productivity. In Productivity of the Ocean: Present and Past (ed. W. H. Berger et al.), pp. 429–455. John Wiley & Sons, Chichester.

    Google Scholar 

  • Bingemer, H.G., Bürgermeister, S., Zimmermann, R. L., and Georgii, H.-W. (1990) Atmospheric OCS: Evidence for a contribution of anthropogenic sources? J. Geophys. Res. 95, 20,617–20,622.

    Google Scholar 

  • Brainerd, K. E. and Gregg, M. C. (1995) Surface mixed and mixing layer depths. Deep-Sea Res. I 42, 1521–1543.

    Google Scholar 

  • Bricaud, A., Morel, A. and Prieur, L. (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26, 43–53.

    Google Scholar 

  • Carder, K. L., Steward, R. G., Harvey, G. R., and Ortner, P. B. (1989) Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnol. Oceanogr. 34, 68–81.

    Google Scholar 

  • Chen, R. F. and Bada, J. L. (1992) The fluorescence of dissolved organic matter in seawater. Mar. Chem. 37, 191–221.

    Google Scholar 

  • Chin, M. and Davis, D.D. (1993) Global sources and sinks of OCS and CS2 and their distribution. Global Biogeochem. Cycles 7, 321–337.

    Google Scholar 

  • Chin, M. and Davis, D.D. (1995) A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J. Geophys. Res. 100, 8993–9005.

    Google Scholar 

  • Crutzen, P.J. (1976) The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3, 73–76.

    Google Scholar 

  • Culberson, C. H. and Pytkowicz, R. M. (1973) Ionization of water in seawater. Mar. Chem. 1, 309–316.

    Google Scholar 

  • Cutter, G. A. and Radford-Knoery, J. (1993) Carbonyl sulfide in two estuaries and shelf waters of the western North Atlantic Ocean. Mar. Chem. 43, 225–233.

    Google Scholar 

  • Damm P. (1989) Klimatologischer Atlas des Salzgehaltes, der Temperatur und der Dichte in der Nordsee, 1968–1985, Technical Report 6–89, pp. 1–81. Institut für Meereskunde der Universität Hamburg, Hamburg.

    Google Scholar 

  • Davies-Colley, R. J. (1992) Yellow substance in coastal and marine waters round the South Island, New Zealand. N. Z. J. Mar. Freshwater Res. 26, 311–322.

    Google Scholar 

  • De Souza Sierra, M. M., Donard, O. F. X., Lamotte, M., Belin, C., and Ewald, M. (1994) Fluorescence spectroscopy of coastal and marine waters. Mar. Chem. 47, 127–144.

    Google Scholar 

  • Determann, S., Reuter, R., and Willkomm, R. (1996) Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses. Deep-Sea Res. I 43, 345–360.

    Google Scholar 

  • Doney, S. C., Najjar, R. G., and Stewart, S. (1995) Photochemistry, mixing and diurnal cycles in the upper ocean. J. Mar. Res. 53, 341–369.

    Google Scholar 

  • Elliott, S., Lu, E., and Rowland, F. S. (1989) Rates and mechanisms for the hydrolysis of carbonyl sulfide in natural waters. Environ. Sci. Technol. 23, 458–461.

    Google Scholar 

  • Erickson III, D. J. and Eaton, B.E. (1993) Global biogeochemical cycling estimates with CZCS satellite data and general circulation models. Geophys. Res. Lett. 20, 683–686.

    Google Scholar 

  • Fahey, D. W., Kawa, S. R., Woodbridge, E. L., Tin, P., Wilson, J. C., Jonsson, H. H., Dye, J. E., Baumgardner, D., Borrmann, S., Toohey, D. W., Avallone, L. M., Proffitt, M. H., Margitan, J., Loewenstein, M., Podolske, J. R., Salawitch, R. J., Wofsy, S. C., Ko, M. K. W., Andreson, D. E., Schoeberl, M. R.,and Chan, K. R. (1993) In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature 363, 509–514.

    Google Scholar 

  • Ferek, R. J. and Andreae, M. O. (1983) The supersaturation of carbonyl sulfide in surface waters of the Pacific Ocean off Peru. Geophys. Res. Lett. 10, 393–396.

    Google Scholar 

  • Ferek, R. J. and Andreae, M. O. (1984) Photochemical production of carbonyl sulfide in marine surface waters. Nature 307, 148–150.

    Google Scholar 

  • Flöck, O. F. and Andreae, M. O. (1996) Photochemical and non-photochemical formation and destruction of carbonyl sulfide and methyl mercaptane in ocean waters. Mar. Chem., in press.

  • Gnanadesikan, A. (1996) Modeling the diurnal cycle of carbon monoxide: Sensitivity to physics, chemistry, biology, and optics. J. Geophys. Res. 101, 12,177–12,191.

    Google Scholar 

  • Green, S. A. and Blough, N. V. (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 39, 1903–1916.

    Google Scholar 

  • Hewitt, C. N. and Davison, B. M. (1988) The lifetime of organosulfur compounds in the troposphere. Appl. Organometallic Chem. 2, 407–415.

    Google Scholar 

  • Hofmann, D. J. (1990) Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years. Science 248, 996–1000.

    Google Scholar 

  • Hoge, F. E., Williams, M. E., Swift, R. N., Yungel, J. K., and Vodacek, A. (1995) Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins. J. Geophys. Res. 100, 24,847–24,854.

    Google Scholar 

  • Højerslev, N. K. (1982) Yellow substance in the sea. In The Role of Solar Ultraviolet Radiation in Marine Ecosystems, pp. 263–281. Plenum Press, New York.

  • Jeffrey, S. W. and Humphrey, G. F. (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167, 191–194. Kantha, L. H. and Clayson, C. A. (1994) An improved mixed layer model for geophysical applications. J. Geophys. Res. 99, 25,235–25,266.

    Google Scholar 

  • Khalil, M. A. K. and Rasmussen, R. A. (1984) Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Earth's atmosphere. Atmos. Environ. 18, 1805–1813.

    Google Scholar 

  • Laane, R. W. P. M. and Kramer, K. J. M. (1990) Natural fluorescence in the North Sea and its major estuaries. Neth. J. Sea Res. 26, 1–9.

    Google Scholar 

  • Leifer, A. (1988) The Kinetics of Environmental Aquatic Photochemistry. Theory and Practice. American Chemical Society, Washington, DC.

    Google Scholar 

  • Lelieveld, J., Crutzen, P. J., and Brühl, C. (1993) Climate effects of atmospheric methane. Chemosphere 26, 739–768.

    Google Scholar 

  • Liss, P.S. and Merlivat, L. (1986) Air-sea gas exchange rates: Introduction and synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling (ed. P. Buat-Ménard), pp. 113–127. D. Reidel Publishing Company.

  • Mihalopoulos, N., Nguyen, B. C., Putaud, J. P., and Belviso, S. (1992) The oceanic source of carbonyl sulfide (COS). Atmos. Environ. 26A, 1381–1394.

    Google Scholar 

  • Najjar, R. G., Erickson, D. J., III and Madronich, S. (1995) Modeling the air-sea fluxes of gases from the decomposition of dissolved organic matter: Carbonyl sulfide and carbon monoxide. In The Role of Non-Living Organic Matter in the Earth's Carbon Cycle (ed. R. Zepp and C. Sonntag), pp. 107–132. John Wiley & Sons, New York.

    Google Scholar 

  • Nelson, J. R. and Guarda, S. (1995) Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States. J. Geophys. Res. 100, 8715–8732.

    Google Scholar 

  • Otto, L., Zimmerman, J. T. F., Fumes, G. K., Mork, M., Saetre, R., and Becker, G. (1990) Review of the physical oceanography of the North Sea. Neth. J. Sea Res. 26, 161–238.

    Google Scholar 

  • Preisendorfer, R. W. (1976) In Hydrologic Optics, Vol. 5, pp. 255–259. US Department of Commerce, NOAA Environmental Research Laboratory, Washington D.C.

    Google Scholar 

  • Radford-Knœry, J. and Cutter, G.A. (1994) Biogeochemistry of dissolved hydrogen sulfide species and carbonyl sulfide in the western North Atlantic Ocean. Geochim. Cosmochim. Acta 58, 5421–5431.

    Google Scholar 

  • Rinsland, C. P., Zander, R., Mahieu, E., Demoulin, P., Goldman, A., Ehhalt, D. H., and Rudolph, J. (1992) Ground-based infrared measurements of carbonyl sulfide total column abundances: Long-term trends and variability. J. Geophys. Res. 97, 5995–6002.

    Google Scholar 

  • Siedler, G. and Peters, H. (1986) Properties of sea water. In Oceanography (ed. J. Sündermann), Vol. V/3a, pp. 233–264. Springer Verlag, Berlin.

  • Smith,R. C. and Baker, K. S. (1981) Optical properties of the clearest natural waters. Appl. Optics 20, 177–184.

    Google Scholar 

  • Solomon, S., Sanders, R. W., Garcia, R. R., and Keys, J. G. (1993) Increased chlorine dioxide over Antarctica caused by volcanic aerosols from Mount Pinatubo. Nature 363, 245–248.

    Google Scholar 

  • Strickland, J. D. H. and Parsons, T. R. (1968) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa.

    Google Scholar 

  • Tolbert, M. A. (1994) Sulfate aerosols and polar stratospheric cloud formation. Science 264, 527–528.

    Google Scholar 

  • Trenberth, K. E., Large, W. G., and Olson, J. G. (1989) The effective drag coefficient for evaluating wind stress over the oceans. J. Clim. 2, 1507–1516.

    Google Scholar 

  • Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill, P. (1980) OCS, stratospheric aerosols and climate. Nature 283, 283–286.

    Google Scholar 

  • Turner, S. M. and Liss, P. S. (1985) Measurements of various sulphur gases in a coastal marine environment. J. Atmos. Chem. 2, 223–232.

    Google Scholar 

  • Uher, G. (1994) Photochemische Produktion von Carbonylsulfid (COS) im Oberflächenwasser der Ozeane: Prozeβstudien und ein empirisches Modell. Ph. D., Johannes-Gutenberg-Universität, Mainz, Germany.

    Google Scholar 

  • Uher, G. and Andreae, M. O. (1997) Photochemical production of carbonyl sulfide in North Sea water: A process study. Limnol. Oceanogr., in press.

  • Ulshöfer, V. S. (1995) Photochemische Produktion von Carbonyl Sulfid im Oberflächenwasser der Ozeane und Gasaustausch mit der Atmosphäre. Ph. D., Ruprecht-Karls-Universität, Heidelberg, Germany.

    Google Scholar 

  • Ulshöfer, V. S., Uher, G., and Andreae, M. O. (1995) Evidence for a winter sink of atmospheric carbonyl sulfide in the northeast Atlantic Ocean. Geophys. Res. Lett. 22, 2601–2604.

    Google Scholar 

  • Ulshöfer, V. S., Flock, O. R., Uher, G., and Andreae, M. O. (1996) Photochemical production and air-sea exchange of carbonyl sulfide in the eastern Mediterranean Sea. Mar. Chem. 53, 25–39.

    Google Scholar 

  • Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., and Jenne, R. L. (1988) Global distribution of total cloud cover and cloud type amounts over the ocean. Technical Note NCAR/TN-317+STR, National Center for Atmospheric Research, Boulder, CO.

    Google Scholar 

  • Weiss, P. S., Andrews, S. S., Johnson, J. E., and Zafiriou, O. C. (1995a) Photoproduction of carbonyl sulfide in South Pacific Ocean waters as a function of irradiation wavelength. Geophys. Res. Lett. 22, 215–218.

    Google Scholar 

  • Weiss, P. S., Johnson, J. E., Gammon, R. H., and Bates, T. S. (1995b) A reevaluation of the open ocean source of carbonyl sulfide to the atmosphere. J. Geophys. Res. 100, 23,083–23,092.

    Google Scholar 

  • Wilke, C. R. and Chang, P. (1955) Correlation of diffusion coefficients in dilute solutions. A.I.Ch.E. Journal 1, 264–271.

    Google Scholar 

  • Zepp, R. G. (1980) Assessing the photochemistry of organic pollutants in aquatic environments. In Dynamics, Exposure and Hazard Assessment of Toxic Chemicals(ed. R. Haque), pp. 69–110. Ann Arbor Science, Collingwood.

    Google Scholar 

  • Zepp, R. G. and Andreae, M. O. (1994) Factors affecting the photochemical production of carbonyl sulfide in seawater. Geophys. Res. Lett. 21, 2813–2816.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uher, G., Andreae, M.O. The diel cycle of carbonyl sulfide in marine surface waters: Field study results and a simple model. Aquat Geochem 2, 313–344 (1996). https://doi.org/10.1007/BF00115975

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115975

Key words

Navigation