Skip to main content
Log in

Continuous crack growth or quantized growth steps?

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The assertion that a non-vanishing Griffith energy release rate requires an r −1 type singularity at the tip of a crack for the energy intensity, i.e. the product of stress and strain, is examined. When the existence of such a singularity is denied on physical grounds continuum mechanics energy balance considerations suggest that initial unstable crack extension is by a discrete growth step of characteristic size Δa.

Résumé

On examine la théorie suivant laquelle la vitesse de relaxation de l'énergie de Griffith non évanescente requiert une singularité du type r −1 au sommet d'une fissure pour exprimer l'intensité d'énergie, à savoir le produit de la contrainte et de la dilatation. Si l'existence de telle singularité est critiquée sur les bases physiques, des considérations d'équilibre d'énergie de mécanique des milieux continus suggèrent qu'une extension initiale d'une fissure instable s'effectue par un ressaut de croissance discrète caractérisé par une dimension Δa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Rice, Proceedings of First International Conference on Fracture, Sendai, Japan, ed. T. Yokobori, Vol. 1 (1966) 309–340.

  2. J. R. Rice, Journal of Applied Mechanics, 35 (1968) 379–386.

    Google Scholar 

  3. J. R. Rice and M. A. Johnson in Inelastic Behaviour of Solids, ed. M. F. Kanninen et al. McGraw-Hill (1970) 641–672.

  4. J. R. Rice, Proceedings of Conference on Mechanics and Mechanisms of Crack Growth, Cambridge, England (1973).

  5. F. A. McClintock, International Journal of Fracture Mechanics, 4 (1968) 101–130.

    Google Scholar 

  6. F. A. McClintock in Fracture: An Advanced Treatise, Vol. 3, ed. H. Liebowitz, Academic Press, N.Y. (1971) 47

    Google Scholar 

  7. J. R. Rice and G. F. Rosengren, Journal of Mechanics and Physics of Solids, 16 (1968) 1–12.

    Google Scholar 

  8. J. W. Hutchinson, Journal of Mechanics and Physics of Solids, 16 (1968) 13–31.

    Google Scholar 

  9. J. W. Hutchinson, Journal of Mechanics and Physics of Solids, 16 (1968) 337–347.

    Google Scholar 

  10. G. I. Barenblatt in Advances in Applied Mechanics, Academic Press, 7 (1962) 55–129.

  11. E. Smith, Engineering Fracture Mechanics, 6 (1974) 213–222.

    Google Scholar 

  12. E. Smith, Engineering Fracture Mechanics, 7 (1975) 285–289.

    Google Scholar 

  13. D. S. Dugdale, Journal of Mechanics and Physics of Solids, 8 (1960) 100–104.

    Google Scholar 

  14. A. P. Kfouri and K. J. Miller, Proceeding of Institute of Mechanical Engineers, 190 (1976) 48–76.

    Google Scholar 

  15. A. P. Kfouri and J. R. Rice, in Fracture, 1977, Vol. 1, Proceedings Fourth International Conference on Fracture, University of Waterloo Press Canada (1977) 43–59.

    Google Scholar 

  16. J. M. Krafft, Applied Materials Research (1964) 88–101.

  17. H. W. Liu, International Journal of Fracture Mechanics, 2 (1966) 339–399.

    Google Scholar 

  18. K. B. Broberg, Journal of Mechanics and Physics of Solids, 19 (1971) 407–418.

    Google Scholar 

  19. R. O. Ritchie, J. F. Knott and J. R. Rice, Journal of Mechanics and Physics of Solids, 21 (1973) 395–410.

    Google Scholar 

  20. H. Andersson, Journal of Mechanics and Physics of Solids, 22 (1974) 285–308.

    Google Scholar 

  21. B. Cotterell, Proceedings of First International Conference on Fracture, Sendai, Japan, ed. T. Yokobori, Vol. 3, D11-1 (1966) 1163–1672.

  22. V. F. Zackay, W. W. Gerberich and E. R. Parker, in Fracture: An Advance Treatise, Vol. 1, ed. H. Liebowitz, Academic Press, N.Y. (1968) 395–440.

    Google Scholar 

  23. J. F. Knott and A. H. Cottrell, Journal of the Iron and Steel Institute, 201 (1963) 249.

    Google Scholar 

  24. A. A. Wells, British Welding Journal, 10 (1963) 563.

    Google Scholar 

  25. G. R. Irwin, Journal of Applied Mechanics (1957) 361–364.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kfouri, A.P. Continuous crack growth or quantized growth steps?. Int J Fract 15, 23–29 (1979). https://doi.org/10.1007/BF00115905

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115905

Keywords

Navigation