Earth, Moon, and Planets

, Volume 73, Issue 3, pp 237–258 | Cite as

Origin and bulk chemical composition of the Galilean satellites and the primitive atmosphere of Jupiter: A pre-Galileo analysis

  • A. J. R. Prentice


A theory for the origin and bulk chemical composition of the Galilean satellites is presented — to coincide with the start of the 2-year orbital tour of this satellite system by the Galileo Orbiter. The theory is based on the author's modern Laplacian theory of solar system origin (Prentice 1978a). The nub of the work reported here is that the Jupiter system is indeed a miniature planetary system that formed by much the same physical and chemical processes that were responsible for the condensation of the sun's own family of planets. In particular, a phenomenon of supersonic turbulent convection which I claim caused the proto-solar cloud to rid excess spin angular momentum, by shedding a concentric family of orbiting gas rings at the present planetary orbits, may also have operated with similar effect within the proto-Jovian cloud.

Several predictions are made for the bulk chemical composition and physical structure of the icy Galilean satellites which, it is hoped, can be tested by the Galileo Orbiter. The mean density of Callisto is consistent with that of a chemically homogeneous body consisting of about 50% rock, 45% water ice, and 5% ammonia ice, incorporated as the hydrate NH3·H2O. Such a higher-than-solar mass abundance ratio of rock to ice arises naturally within the proto-Jovian cloud since (i) only 34% of the available H2O vapor within the gas ring shed by the proto-solar cloud at Jupiter's orbit was condensed in solid form, and (ii) gravitational sedimentation of solids onto the mean orbit of the proto-solar gas ring leads to an enhancement in the heavy element fraction of the captured primitive Jovian atmosphere. All in all, I predict Jupiter's primitive atmosphere to be enhanced by a factor ζen ≈ 2 in its rock mass fraction (including S) and by a factor ≈ 1.3 in its water content, relative to solar abundances. NH3 and CH44 are present in almost solar proportions.

Initially, Ganymede consisted of a chemically uniform mixture of rock and water ice in the proportions 0.524 : 0.476. The observed mean density of this satellite, however, lies midway between the mean densities expected for homogeneous and fully differentiated rock/ice bodies. The calculations presented here suggest that this body is about half-differentiated. I predict that the Galileo Orbiter will find the mean axial moment-of-inertia factor of Ganymede to be 0.35 ± 0.01.

The circum-Jovian gas ring from which Europa condensed had a temperature of 302 K and a mean orbit gas pressure of 2.8 bar. Initially, this satellite consisted of a uniform mix of hydrated rocks, of which brucite Mg(OH)2 was the principal constituent. The observed mean density of Europa coincides with that expected for this mix, provided that its 9.4% native H2O content is now fractionated from the rock and resides at the satellite surface, forming a frozen mantle some 155 km thick. Regretfully, the mean density of Io cannot be matched by the solid composition reported here. Perhaps this satellite has a molten interior.

Key words

Jupiter satellites chemical composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, E. and Grevesse, N.: 1989, Geochim. Cosmochim. Acta 53, 197–214.Google Scholar
  2. Anderson, J. D., Colombo, G., Esposito, P. B., Lau, E. L., and Trager, G. B.: 1986, Icarus 71, 337–349.Google Scholar
  3. Campbell, J. K. and Anderson, J. D.: 1989, Astron. J. 97, 1485–1495.Google Scholar
  4. Campbell, J. K. and Synnott, S. P.: 1985, Astron. J. 90, 364–372.Google Scholar
  5. Cattaneo, F., Hurlburt, N. E., and Toomre, J.: 1990, Astrophys. J. 349, L63-L66.Google Scholar
  6. Cattaneo, F., Brummell, N. H., Toomre, J., Malagoli, A., and Hurlburt, N. E.: 1991, Astrophys. J. 370, 282–294.Google Scholar
  7. Davies, M. E., Abalukin, V. K., Brahic, A., Bursa, M., Chovitz, B. H., Lieske, J. H., Seidelmann, P. K., Sinclair, A. T., and Tjuflin, Y. S.: 1992, Celest. Mech. & Dyn. Astron. 53, 377–397.Google Scholar
  8. Dyt, C. P. and Prentice, A. J. R.: 1994, Bull. Amer. Astron. Soc. 26, 1086.Google Scholar
  9. Ellsworth, K. and Schubert, G.: 1983, Icarus 54, 490–510.Google Scholar
  10. Fanale, F. P., Johnson, T. V., and Matson, D. L.: 1977, in Burns, J. (ed.), Planetary Satellites, University of Arizona Press, pp. 379–405.Google Scholar
  11. Fegley, B., Jr.: 1988, in Nuth, J. A. and Sylvester, P. (eds.), Workshop on the Origins of Solar Systems, LPI Tech. Rpt. 88–04, pp. 51–60.Google Scholar
  12. Fei, Y. and Mao, H-K.: 1993, J. Geophys. Res. 98, 11875–11884.Google Scholar
  13. Friedson, A. J. and Stevenson, D. J.: 1983, Icarus 56, 1–14.Google Scholar
  14. Gautier, D. and Owen, T.: 1989, in Atreya, S. K., Pollack, J. B., and Matthews, M. S. (eds.), Origin and Evolution of Planetary Atmospheres, University of Arizona Press, pp. 487–512.Google Scholar
  15. Grevesse, N., Noels, A., and Sauval, A. J.: 1992, Proceedings of the First SOHO Workshop, ESA SP-348, pp. 305–308.Google Scholar
  16. Grossman, L.: 1972, Geochim. Cosmochim. Acta 36, 597–619.Google Scholar
  17. Laplace, P. S. de: 1796, Exposition du Systéme du Monde, Courcier, Paris, pp. 387–397.Google Scholar
  18. Lewis, J. S.: 1969, Icarus 10, 365–378.Google Scholar
  19. Lewis, J. S.: 1974, Science 186, 440–443.Google Scholar
  20. Lewis, J. S. and Prinn, R. G.: 1980, Astrophys. J. 238, 357–364.Google Scholar
  21. Lodders, K. and Fegley, B. Jr.: 1994, Icarus 112, 368–375.Google Scholar
  22. Lunine, J. I. and Hunten, D. M.: 1987, Icarus 69, 566–570.Google Scholar
  23. Lunine, J. I. and Stevenson, D. J.: 1982, Icarus 52, 14–39.Google Scholar
  24. Lupo, M. J. and Lewis, J. S.: 1979, Icarus 40, 157–170.Google Scholar
  25. Maddox, J.: 1989, Nature 340, 673.Google Scholar
  26. Meade, C. and Jeanloz, R.: 1990, Geophys. Res. Letts. 17, 1157–1160, 1990.Google Scholar
  27. Mizuno, H.: 1980, Prog. Theor. Phys. 64, 544–557.Google Scholar
  28. Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M., Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., Spencer, N. W. and Way, S. H.: 1996, Science 272, 846–848.Google Scholar
  29. Pollack, J. B. and Reynolds, R. T.: 1974, Icarus 21, 248–253.Google Scholar
  30. Prentice, A. J. R.: 1973, Astron. Astrophys. 27, 237–248.Google Scholar
  31. Prentice, A. J. R.: 1974, in Wild, J. P. (ed.), In the Beginning ... the Origin of Planets and Life, Australian Academy of Science, Canberra, pp. 15–47.Google Scholar
  32. Prentice, A. J. R.: 1978a, in Dermott, S. F. (eds.), The Origin of the Solar System, John Wiley & Sons, New York, pp. 111–161.Google Scholar
  33. Prentice, A. J. R.: 1978b, Moon & Planets 19, 341–398.Google Scholar
  34. Prentice, A. J. R.: 1980, Australian J. Phys. 33, 623–637.Google Scholar
  35. Prentice, A. J. R.: 1981, JPL Publication 81-79, pp. 1–14.Google Scholar
  36. Prentice, A. J. R.: 1990, Meteoritics 25, 399–400.Google Scholar
  37. Prentice, A. J. R.: 1991a, Bull. Amer. Astron. Soc. 23, 1232.Google Scholar
  38. Prentice, A. J. R.: 1991b, Proc. Astron. Soc. Australia 9, 321–323.Google Scholar
  39. Prentice, A. J. R.: 1993, Proc. Astron. Soc. Australia 10, 189–195.Google Scholar
  40. Prentice, A. J. R.: 1995, Bull. Amer. Astron. Soc. 27, 1170.Google Scholar
  41. Prentice, A. J. R.: 1996, Physics Letters A, 213, 253–258.Google Scholar
  42. Prentice, A. J. R. and ter Haar, D.: 1979, Nature 280, 300–302.Google Scholar
  43. Ransford, G. A., Finnerty, A. A., and Collerson, K. D.: 1981, Nature 289, 21–24.Google Scholar
  44. Robie, R. A., Hemingway, B. S., and Fisher, J. R.: 1978, Geol. Survey Bull. 1452, U. S. Gov. Printing Office, Washington, D.C.Google Scholar
  45. Schubert, G., Cassen, P., and Young, R. E.: 1979, Icarus 38, 192–211.Google Scholar
  46. Schubert, G., Limonadi, E., Anderson, J. D., Campbell, J. K., and Giampieri, G.: 1994, Icarus 111, 433–440.Google Scholar
  47. Smith, B. A. and the Voyager 2 Imaging Science Team: 1979, Science 206, 927–950.Google Scholar
  48. Stevenson, D. J.: 1982, Lunar Planet. Sci. XIII, 770.Google Scholar
  49. Taylor, S. R.: 1992, Solar System Evolution: A New Perspective, Cambridge University Press, p. 191.Google Scholar
  50. Whipple, F. L.: 1968, Earth, Moon, and Planets, 3rd Edition, Harvard University Press, p. 246.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. J. R. Prentice
    • 1
  1. 1.Monash UniversityClaytonAustralia

Personalised recommendations