Advertisement

Journal of Atmospheric Chemistry

, Volume 12, Issue 2, pp 169–180 | Cite as

Henry's law constant and hydrolysis of peroxyacetyl nitrate (PAN)

  • Jost Kames
  • Silke Schweighoefer
  • Ulrich Schurath
Article

Abstract

The effect of temperature on the solubility of PAN and on its hydrolysis rate in near-neutral and slightly acidic water were studied in a bubble column apparatus. The results obtained are a Henry's law coefficient H=10−9.04±0.6 exp[(6513±376)/T] M atm−1, and a first-order hydrolysis rate constant k=106.60±1.0 exp[(−6612±662)/T] s-1, which was independent of pH in the range 3.2≤pH≤6.7. The products formed are nitrite and nitrate in approximately equal proportions under near-neutral conditions. At a pH<4, nitrite is oxidized in a secondary reaction, and nitrate becomes the only product at low pH. Previously measured deposition velocities of PAN on stagnant water surfaces are shown to be hydrolysis rate limited.

Key words

Peroxyacetyl nitrate (PAN) solubility hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas E. L., 1988, Evidence for ≥ C3 alkyl nitrates in rural and remote atmospheres, Nature 331, 426–428.Google Scholar
  2. Flocke, F., Vólz-Thomas, A., and Kley, D., 1989. Measurements of alkyl nitrates in rural and polluted air masses, Internat. Conf. on the Generation of Oxidants on Regional and Global Scales, 3–7 July 1989, University of East Anglia, Norwich, England.Google Scholar
  3. Glavas S. and Schurath U., 1983, Concentration and storage of peroxyacetylnitrate (PAN) for mobile field measurements in tropospheric air, Chimika Chronika NS 12, 89–97.Google Scholar
  4. Glavas S. and Schurath U., 1985, Peroxyacetyl nitrate forming potential of five prototype hydrocarbons, Environ. Sci. Technol. 19, 950–955.Google Scholar
  5. Gaffney J. S., Fajer R., and Senum G. I., 1984, An improved procedure for high purity gaseous peroxyacetyl nitrate production: use of heavy lipid solvents, Atmos. Environ. 18, 215–218.Google Scholar
  6. Garland J. A. and Penkett S. A., 1976, Absorption of peroxyacetyl nitrate and ozone by natural surfaces, Atmos. Environ. 10, 1127–1131.Google Scholar
  7. Holdren M. W., Spicer C. W., and Hales J. M., 1984, Peroxyacetyl nitrate solubility and decomposition rate in acidic water, Atmos. Environ 18, 1171–1173.Google Scholar
  8. Kenley, R. A., Trevor, P. L., and Lan, B. Y., Preparation and thermal decomposition of pernitric acid (HOONO2) in aqueous media, J.Am. Chem. Soc. 103, 2203–2206.Google Scholar
  9. Kirby A. J., 1972, Hydrolysis and formation of esters of organic acids. Chapter 2 in Ester Formation and Hydrolysis and Related Reactions, Comprehensive Chemical Kinetics 10, C. H. Bamford and C. F. H. Tipper (eds.), Elsevier, Amsterdam, pp. 57–207.Google Scholar
  10. Lee Y. N., 1984, Kinetics of some aqueous-phase reactions of peroxyacetyl nitrate, Presented at the Conference on Gas-liquid Chemistry of Natural Waters, 1, BNL 51 757, 21/1–21/7, Brookhaven National Laboratories, Brookhaven, N.Y.Google Scholar
  11. Lee Y. N. and Lind J. A., 1986, Kinetics of aqueous-phase oxidation of nitrogen (III) by hydrogen peroxide, J. Geophys. Res. 91, 1105–1126.Google Scholar
  12. Meyrahn M., Hahn J., Helas G., Warneck P., and Penkett S. A., 1984, Cryogenic sampling and analysis of peroxyacetyl nitrate in the atmosphere in Physico-Chemical Behaviour of Atmospheric Pollutants, B. Versino and H. Ott (eds.), D. Reidel, Dordrecht, pp. 38–43.Google Scholar
  13. Nielsen T., Hansen A. M., and Thomsen E. L., 1982, A convenient method for preparation of pure standards of peroxyacetyl nitrate for atmospheric analysis, Atmos. Environ. 16, 2447–2450.Google Scholar
  14. Roberts J. M., 1990, The atmospheric chemistry of organic nitrates, Atmos. Environ. 24A, 243–287.Google Scholar
  15. Roumelis N. and Glavas S., 1989, Decomposition of peroxyacetyl nitrate and peroxypropionyl nitrate during gas chromatographic determination with a wide-bore capillary and two packed columns, Anal. Chem. 61, 2731–2734.Google Scholar
  16. Schurath U., Kortman U., and Glavas S., 1984, Properties, formation, and detection of peroxyacetyl nitrate, in Physico-Chemical Behaviour of Atmospheric Pollutants, B. Versino and H. Ott (eds.), D. Reidel, Dordrecht, pp. 27–37.Google Scholar
  17. Singh H. B., Salas L. J., Ridley B. A., Shetter J. D., Donahue N. M., Fehsenfeld F. C., Fahey D. W., Parrish D. D., Williams E. J., Liu S. C., Hübler G., and Murphy P. C., 1985, Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere, Nature 318, 347–349.Google Scholar
  18. Singh H. B., Salas L. J., and Viezee W., 1986, Global distribution of peroxyacetyl nitrate, Nature 321, 588–591.Google Scholar
  19. Singh J. B. and Salas J., 1989, Measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) at selected urban and remote sites, Atmos. Environ. 23, 231–238.Google Scholar
  20. Stephens E. R., 1967, The formation of molecular oxygen by alkaline hydrolysis of peroxyacetyl nitrate, Atmos. Environ. 1, 19–20.Google Scholar
  21. Stephens E. R., 1969, The formation, reactions, and properties of peroxyacetyl nitrates (PANs) in photochemical air pollution, Adv. Environ. Sci. 1, 119–146.Google Scholar
  22. Tsalkani N., Perros P., and Toupance G., 1987, High PAN concentrations during nonsummer periods: a study of two episodes in Créteil (Paris), France, J. Atmos. Chem. 5, 291–299.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Jost Kames
    • 1
  • Silke Schweighoefer
    • 1
  • Ulrich Schurath
    • 1
  1. 1.Institut für Physikalische Chemie der Universität BonnBonn 1F.R.G.

Personalised recommendations