Skip to main content
Log in

Cytogenetic evolution in the Triticinae: Homoeologous relationships

  • Published:
Genetica Aims and scope Submit manuscript

The subtribe Triticinae consists of five genera, namely Aegilops, Agropyron, Haynaldia, Secale and Triticum, all with x=7 as the basic number and possibly derived from a common ancestor (PP). The homoeologous relationships known to exist between individual chromosomes from different genomes of hexaploid wheat, are being extended to other members of the subtribe. The available work in the area of homoeologous relationships in the subtribe Triticinae has been reviewed in detail. Homoeologous relationships of one chromosome of each of the four species of Aegilops i.e. Ae. comosa, Ae. caudata, Ae. umbellulata and Ae. bicornis are now known. Similarly, in the genus Agrophyron, relationships of six chromosomes of A. clongatum (2n=70), two chromosomes of A. clongatum (2n=14) and of two chromosomes of A. intermedium are known. The genus Secale, for which the author's own work is also available, has been most extensively studied and relationships of at least five chromosomes of S. cereale are now known. No other species of Secale has been used in similar studies. In the genus Haynaldia, no chromosome could be shown to have any relationship with a wheat chromosome, perhaps due to low erossability with Triticum aestivum. The above work has been discussed and reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta, C. A. (1961). The transfer of stem rust resistance from rye to wheat. Ph. D. Thesis, Univ. Missouri.

  • Acosta, C. A. (1962). Diss. Abstr. 23: p. 24.

    Google Scholar 

  • Anderson, L. M. & C. J. Driscoll (1967). The production and breeding behaviour of a monosomic alien substitution line. Can. J. Genet. Cytol. 9: 399–403.

    Google Scholar 

  • Bakshi, J. S. & A. M. Schlehuber (1959). Identification of a substituted chromosome pair in a Triticum — Agropyron line. Proc. Okla. Acad. Sci. 39: 16–21.

    Google Scholar 

  • Bcarber, H. N. (1969). Hybridization and the evolution of plants. Taxon 19: 154–160.

    Google Scholar 

  • Barber, H. N., C. J. Driscoll, P. M. Long & R. S. Vickery (1968). Protein genetics of wheat and homoeologous relationships of chromosomes. Nature 218: 450–452.

    Google Scholar 

  • Bhaskaran, S. & M. S. Swaminathan (1960). Polyploidy and radiosensitivity in wheat and barley. Genetica 31: 449–480.

    Google Scholar 

  • Bhatia, C. R. (1968). Electrophoresis of analogous enzymes in Triticinae. Proc. 3rd int. Wheat Genet. Symp., Canberra, pp. 111–115.

  • Bielig, L. M. & C. J. Driscoll (1970a). Substitution of rye chromosome 5RL for chromosome 5B of wheat and its effect on chromosome pairing. Genetics 65: 241–247.

    Google Scholar 

  • Bielig, L. M. & C. J. Driscoll (1970b). Substitution of rye chromosome 5R for its three wheat homoeologues. Genet. Res. 16: 317–325.

    Google Scholar 

  • Bowden, W. M. (1959). The taxonomy and nomenclature of wheats, barleys and ryes and their wild relatives. Can. J. Bot. 37: 657–684.

    Google Scholar 

  • Brewer, G. J., C. F. Sing & E. R. Sears (1969). Studies on isozyme patterns in nullisomic-tetrasomic combinations of hexaploid wheat. Proc. natn. Acad. Sci. U.S.A. 64: 1224–1229.

    Google Scholar 

  • Chapman, V. & R. Riley (1966). The allocation of the chromosomes of Triticum aestivum to the A and B genomes and evidence on genome structure. Can. J. Genet. Cytol. 8: 57–63.

    Google Scholar 

  • Chapman, V. & R. Riley (1970). Homoeologous meiotic chromosome pairing in Triticum aestivum in which chromosome 5B is replaced by an alien homoeologue. Nature 226: 376–377.

    Google Scholar 

  • Chennaveeraiah, M. S. (1960). Karyomorphologic and cytotaxonomic studies in Aegilops. Acta Horti gotoburg. 23: 85–178.

    Google Scholar 

  • Chennaveeraiah, M. S. (1962). Some aspects of the cytotaxonomy of Aegilops. Proc. Summer School of Botany, Darjeeling, pp. 43–50.

  • Driscoll, C. J. (1960). Cytogenetical studies of wheat in relation to monosomic analysis and disease resistance derived from Agropyron elongatum. M. Sc. Thesis, Univ. Sydney.

  • Dvořàk, J. (1971a). Hybrids between a diploid Agropyron elongatum and Aegilops squarrosa. Can. J. Genet. Cytol. 13: 90–94.

    Google Scholar 

  • Dvořàk, J. (1971b). A study of homoeology between the chromosomes of diploid Agropyron elongatum Host. and wheat, Triticum aestivum L. (Abstract). Can. J. Genet. Cytol. 13: 630.

    Google Scholar 

  • Evans, L. E. (1962), Karyotype analysis and chromosome designations for diploid Agropyron elongatum (Host.) P. B. Can. J. Genet. Cytol. 4: 267–271.

    Google Scholar 

  • Evans, L. E. (1964). Genome reconstruction within the Triticinae. I. The synthesis of hexaploid (2n=42) having chromosomes of Agropyron and Aegilops in addition to the A and B genomes of Triticum durum. Can. J. Genet. Cytol. 6, 19–28.

    Google Scholar 

  • Gaul, H. (1958). A critical survey of genome analysis. Proc. Ist int. Wheat Genet. Symp., Winnipeg, pp. 194–206.

  • Gupta, P. K. (1967). Studies on transmission of alien substitution gametes involving four rye chromosomes in winter wheat. Ph. D. Thesis. Univ. Manitoba.

  • Gupta, P. K. (1968). Homoeology of a rye (Secale cereale var. Dakold) chromosome. Wheat Inf. Serv. 27: 13–15.

    Google Scholar 

  • Gupta, P. K. (1969a). On the substituting ability of individual alien chromosomes in common wheat. Wheat Inf. Serv. 28: 7–9.

    Google Scholar 

  • Gupta, P. K. (1969b). Studies on transmission of rye substitution gametes in common wheat. Ind. J. Genet. Pl. Breed. 29: 163–172.

    Google Scholar 

  • Gupta, P. K. (1970). Variability in the morphology of rye (Secale cereale) chromosome when placed in wheat (Triticum aestivum) background. Phyton, Horn 14: 9–13.

    Google Scholar 

  • Gupta, P. K. (1971). Homoeologous relationship between wheat and rye chromosomes—Present status. Genetica 42: 199–213.

    Google Scholar 

  • Gupta, P. K. (1972). The homoeologous group 4 in the Triticinae. Wheat Inf. Serv. 35: (In press).

  • Hall, O. & B. L. Johnson (1963). Electrophoretic analysis of the amphiploid of Stipa viridula x Oryzopsis hymonoides and its parental species. Hereditas 48: 530–535.

    Google Scholar 

  • Hall, O., B. L. Johnson & B. Olered (1966). Evolution of genomic relationships in wheat from their protein homologies. Hereditas (Suppl.) 2: 47–54.

    Google Scholar 

  • Halloran, G. M. (1966a). Hybridization of Haynaldia villosa with Triticuma aestivum. Aust. J. Bet. 14: 355–359.

    Google Scholar 

  • Halloran, G. M. (1966b). Pairing between Triticum aestivum and Haynaldia villosa chromosomes. J. Hered. 57: 233–235.

    Google Scholar 

  • Hart, G. E. (1970). Evidence for triplicate genes for alcohol dehydrogenase in hexaploid wheat. Proc. natn. Acad. Sci. U.S.A. 66: 1136–1141.

    Google Scholar 

  • Hyde, B. B. (1953). Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. Am. J. Bot. 40: 174–182.

    Google Scholar 

  • Irani, B. N. & C. R. Bhatia (1972). Chromosomal location of alcohol dehydrogenase gene in rye using wheat-rye addition lines. Genetica 43: 195–200.

    Google Scholar 

  • Jenkins, B. C. (1966). Secale additions and substitutions to common wheat. Hereditas (Suppl.) 2: 301–312.

    Google Scholar 

  • Jenkins, B. C. & A. Mochizuki (1957). A new amphiploid from a cross between Triticum durum and Agropyron elongatum (2n=14). Wheat Inf. Serv. 5: 15.

    Google Scholar 

  • Johnson, B. L., D. Bernhart & O. Hall (1967). Analysis of genome and species relationships in polyploid wheats by protein electrophoresis. Am. J. Bot. 54: 1089–1098.

    Google Scholar 

  • Johnson, B. L. & O. Hall (1965). Analysis of phylogenetic affinities in the Triticinae by protein electrophoresis. Am. J. Bot. 52: 506–513.

    Google Scholar 

  • Johnson, B. L. & O. Hall (1966). Electrophoretic studies of species relationships in Triticum. Acta Agric. scand. (Suppl.) 16: 222–224.

    Google Scholar 

  • Johnson, R. (1966). The substitution of a chromosome from Agropyron clongatum for chromosomes of hexaploid wheat. Can. J. Genet. Cytol. 8: 279–292.

    Google Scholar 

  • Kattermann, G. (1938). Über konstante, halmbehaarte Stamme aus Weizenroggenbastardierung mit 2n=42 Chromosomen. Z. indukt. Abstamm.-u. Vererb Lehre 74: 345–375.

    Google Scholar 

  • Kihara, H. (1963). Nucleus and chromosome substitution in wheat and Aegilops II. Chromosome substitution. Seiken Ziho 15: 13–23.

    Google Scholar 

  • Kimber, G. (1967). The addition of the chromosomes of Aegilops umbellula to Triticum aestivum (var. Chinese Spring). Genet. Res. 9: 111–114.

    Google Scholar 

  • Knott, D. R. (1958a). The inheritance in wheat of a blue endosperm colour derived from Agropyron elongatum. Can. J. Bot. 36: 571–574.

    Google Scholar 

  • Knott, D. R. (1958b). The effect on wheat of an Agropyron chromosome carrying rust resistance. Proc. roth Int. Conf. Genet., Montreal 2: 148.

    Google Scholar 

  • Knott, D. R. (1961). The effect of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Pl. Sci. 41: 109–123.

    Google Scholar 

  • Knott, D. R. (1964). The effect on wheat of an Agropyron ehromosome earrying rust resistance. Can. J. Genet. Cytol. 6: 500–509.

    Google Scholar 

  • Konzak, C. F. & R.E. Heiner (1959). Progress in the transfer of resistance to bunt (Tilletia caries and T. foetida) from Agropyron to wheat. Wheat Inf. Serv. 9–10: 31.

    Google Scholar 

  • Larson, R. L. & T. C. Atkinson (1970). Identity of the wheat chromosomes replaced by Agropyron chromosomes in a triple alien chromosome substitution line immune to wheat streak mosaic. Can. J. Genet. Cytol. 12: 145–150.

    Google Scholar 

  • Larter, E. N., L. H. Shebeski, R. C. McGinnis, L. E. Evans & P. J. Kaltsikes (1970). Rosner, A hexaploid Triticale cultivar. Can. J. Pl. Sci. 50: 120–124.

    Google Scholar 

  • Lee, Y. H., E. N. Larter & L. E. Evans (1969). Homoeologous relationship of rye chromosome VI with two homoeologous groups from wheat. Can. J. Genet. Cytol. 11: 803–809.

    Google Scholar 

  • Mochizuki, A. (1960). Addition of individual chromosomes of Agropyron to durum wheat. Wheat Inf. Serv. 11: 22–23.

    Google Scholar 

  • Morris, R. & E. R. Sears (1967). The cytogenetics of wheat and its relatives. In: K. S. Quisenberry & L. P. Reitz (Eds.), Wheat and Wheat Improvement, pp. 19–87.

  • Nanda, J. S. (1968). Cytogenetic studies on a number of Triticum-Agropyron derivatives. Ph. D. Thesis. Univ. Saskatchewan.

  • Okamoto, M. (1962). Identification of the chromosomes of common wheat belonging to the A and B genomes. Can. J. Genet. Cytol. 4: 31–37.

    Google Scholar 

  • Okamoto, M. & E. R. Sears (1962). Chromosomes involved in translocations obtained from haploids of common wheat. Can. J. Genet. Cytol. 4: 24–30.

    Google Scholar 

  • O'Mara, J. G. (1946). The substitution of a specific Secale cereale chromosome for a specific Triticum vulgare chromosome. Reo. Genet. Soc. Am. 15: 62–63.

    Google Scholar 

  • Pegington, C. & R. Rees (1970). Chromosome weights and measures in the Triticinae. Heredity 25: 195–205.

    Google Scholar 

  • Quinn, C. J. & C. J. Driscoll (1967). Relationships of the chromosomes of common wheat and related genera. Crop Sci. 7: 74–75.

    Google Scholar 

  • Rees, H. & M. R. Walters (1965). Nuclear DNA and the evolution of wheat. Heredity 20: 73–82.

    Google Scholar 

  • Riley, R. (1965a). Cytogenetics and the evolution of wheat. In: J. B. Hutchinson (Ed.), Essays on crop plant evolution. Cambridge Univ. Press, pp. 103–118.

  • Riley, R. (1965b). Cytogenetics and plant breeding. Proc. 11th Int. Congr. Genet. 3: 681–688.

    Google Scholar 

  • Riley, R. (1968). The basic and applied genetics of chromosome pairing. Proc. 3rd int. Wheat Genet. Symp., Canberra, pp. 185–195.

  • Riley, R. & V. Chapman (1964). Cytological determination of the homocology of chromosomes of Triticum aestivum. Nature 203: 156–158.

    Google Scholar 

  • Riley, R., V. Chapman & R. Johnson (1968). Induction of yellow rust resistant 0 of Aegilops comosa into wheat by genetically induced homocologous recombination. Nature 217: 383–384.

    Google Scholar 

  • Riley, R., V. Chapman & R. Johnson (1969). The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res. 12: 199–219.

    Google Scholar 

  • Riley, R., V. Chapman & R. C. F. Macer (1966). The homoeology of an Aegilops chromosome causing stripe rust resistance. Can. J. Genet. Cytol. 8: 616–630.

    Google Scholar 

  • Riley, R. & G. Kimber (1966). The transfer of alien genetic variation to wheat Rep. Pl. Breed. Inst. 1964–65, 6–36.

    Google Scholar 

  • Riley, R., J. Unrau & V. Chapman (1958). Evidence on the origin of the B genome of wheat. J. Hered. 49: 91–98.

    Google Scholar 

  • Sarkar, P. & G. L. Stebbins (1956). Morphological evidence concerning the origin of the B genome of wheat. Am. J. Bot. 42: 297–304.

    Google Scholar 

  • Schlehuber, A. M. & E. E. Sebesta. (1959). Progress in wheat-grass breeding. Proc. Okla. Acad. Sci. 39: 6–16.

    Google Scholar 

  • Sears, E. R. (1952). Homoeologous chromosomes in Triticum aestivum. Genetics 37: 624.

    Google Scholar 

  • Sears, E. R. (1954). The aneuploids of common wheat. Bull. Mo. agric. Exp. Stn. 572: pp. 58.

  • Sears, E. R. (1956). The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol. 9: 1–22.

    Google Scholar 

  • Sears, E. R. (1958). The aneuploids of common wheat. Proc. 1st int. Wheat Genet. Symp., Winnipeg, 221–229.

  • Sears, E.R. (1966). Nullisomic-tetrasomic combinations in hexaploid wheat. Heredity 20 (Suppl.): 29–45.

    Google Scholar 

  • Sears, E. R. (1968). Relationships of chromosomes 2A, 2B and 2D with their rye homoeologue. Proc. 3rd. int. Wheat Genet. Symp., Canberra, pp. 53–61.

  • Sears, E. R. (1969). Wheat Cytogenetics. Ann. Rev. Genet. 3: 451–468.

    Google Scholar 

  • Sharma, D. & D. R. Knott (1966). The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8: 137–143.

    Google Scholar 

  • Shepherd, K. W. (1968). Chromosomal control of endosperm proteins in wheat and rye. Proc. 3rd int. Wheat Genet. Symp. Canberra, pp. 86–96.

  • Sing, C. F. & G. J. Brewer (1969). Izozymes of a polyploid series of wheat. Genetics 61: 391–398.

    Google Scholar 

  • Smith, J. D. (1963). The effect of chromosome number on competitive ability of hexaploid wheat gametophytes. Can. J. Genet. Cytol. 5: 220–226.

    Google Scholar 

  • The, T. T. & E. P. Baker (1970). Homoeologous relationships between two Agropyron intermedium chromosomes and wheat. Wheat Inf. Serv. 31: 29–31.

    Google Scholar 

  • Townley-Smith, J. F. (1965). A cytogenetic study of Agropyron chromosomes carrying rust resistance. M. Sc. Thesis. Univ. Saskatchewan.

  • Upadhya, M. & M. S. Swaminathan (1963). Deoxyribonucleic acid and the ancestry of wheat. Nature 200: 713–714.

    Google Scholar 

  • Wienhues, A. (undated). Methoden und Ergebnisse der Art-und Gattungsbastardierung un ihre Bedeutung in der praktischen Züchtung. ‘Vorträge für Pflanzenzuchter’ D.L.G.-Verlag, Frankfurt.

  • Wienhues, A. (1965). Cytogenetische Untersuchungen über die chromosomale Grundlage der Rostresistenz der Weizensorte ‘Weique’. Züchter 35: 352–354.

    Google Scholar 

  • Wienhues, A. (1966). Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. Proc. 2nd. int. Wheat Genet. Symp., Lund 2: 328–341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, P.K. Cytogenetic evolution in the Triticinae: Homoeologous relationships. Genetica 43, 504–530 (1972). https://doi.org/10.1007/BF00115595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115595

Keywords

Navigation