Skip to main content
Log in

High-sensitivity magnetic resonance by SQUID detection

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A SQUID magnetometer has been used to detect electron paramagnetic resonance of the Ce%3 ion in dilute CMN (1 %) at low temperatures down to 10 mK. This method of detecting magnetic resonance allows a greater signalto-noise ratio over conventional methods with samples having long Τ1 and short Τ2 values and it is particularly useful at very low temperatures. Resonance experiments can be simply performed without apparatus modification at rf frequencies ranging from about 10 kHz to well above 1 GHz, thus making it possible to observe low-field EPR as well as NMR signals from the same sample. Spin lattice relaxation measurements, using this method, on both powdered and single-crystal 1% CMN show a low-temperature phonon bottleneck behavior consistent with previous measurements. Relaxation in the powder is much faster than that observed in the single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Day, Phys. Rev. Lett. 29, 540 (1972).

    Google Scholar 

  2. D. J. Meredith, G. R. Pickett, and O. G. Symko, J. Low Temp Phys. 13, 607 (1973).

    Google Scholar 

  3. R. A. Webb, Rev. Sci. Instr. 48, 1585 (1977).

    Google Scholar 

  4. L. A. Moberly and O. G. Symko, IEEE Trans. Magnetics MAG-13, 358 (1977).

    Google Scholar 

  5. L. A. Moberly and O. G. Symko, in Proc. XIXth Congress Ampere (Heidelberg, 1976), p. 273.

  6. R. A. Webb, Phys. Rev. Lett. 38, 1151 (1977).

    Google Scholar 

  7. B. S. Deaver, C. M. Falco, J. H. Harris, and S. A. Wolf, in AIP Conf. Proc., No. 44 (1978), p.58.

  8. R. V. Chamberlin, L. A. Moberly, and O. G. Symko, J. Phys. (Paris) 39, C6–1217 (1978).

    Google Scholar 

  9. J. Schmidt and I. Solomon, J. Appl. Phys. 37, 3719 (1966).

    Google Scholar 

  10. J. E. Wertz and J. R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications (McGraw-Hill, 1972), p. 450.

  11. R. H. Ruby, H. Benoit, and C. D. Jeffries, Phys. Rev. 127, 51 (1962).

    Google Scholar 

  12. A. C. Anderson and J. E. Robichaux, Phys. Rev. B 3, 1410 (1971).

    Google Scholar 

  13. M. Chapellier, J. Phys. (Paris) 39, C6–273 (1978).

    Google Scholar 

  14. A. I. Ahonen, T. Kodama, M. Krusius, M. A. Paalanen, R. C. Richardson, W. Schoepe, and Y. Takano, J. Phys. C 9, 1665 (1976).

    Google Scholar 

  15. A. G. Anderson, Phys. Rev. 125, 1517 (1962).

    Google Scholar 

  16. W. G. Clark, L. C. Tippie, G. Frossati, and H. Godfrin, J. Phys. (Paris) 39, C6–1160 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF Grant No. DMR-76-21702.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamberlin, R.V., Moberly, L.A. & Symko, O.G. High-sensitivity magnetic resonance by SQUID detection. J Low Temp Phys 35, 337–347 (1979). https://doi.org/10.1007/BF00115584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115584

Keywords

Navigation