Skip to main content
Log in

Specific heat anomalies and spin-spin interactions in carbons: A review

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

In the introductory part of the paper the classification of carbons according to mode of preparation and structure into soft and hard, carbon blacks, pyrocarbons, evaporated films, and whiskers, and their response to heat treatment, including the kinetics of carbonization and graphitization, are briefly described. The changes occurring in electronic properties as the hopping conductivity of raw carbons transforms into band conductivity upon departure of organics and the further evolution of bands toward graphitic structure, as well as various doping techniques, are then briefly discussed. In the second part, after a brief review of the early research on low-temperature specific heat of carbon materials heat treated to graphitizing temperatures and corresponding efforts at interpretation, information gathered through the last ten years on specific heat anomalies in variously heat-treated and neutron-irradiated soft and hard carbons is reviewed. In soft carbons two specific heat peaks at about 0.3 and 0.65 K, and a large, linear term of nonconduction origin, are observed at all stages of carbonization up to quite high degrees of graphitization or when disorder is introduced by neutron irradiation. In this latter case a spectacular disappearance of the anomalies by subsequent thermal anneal to 300°C has been observed. The peaks and the linear term are shown to have a magnetic origin, the specific heat varying greatly with applied magnetic field. In hard carbons no clear specific heat peaks were found—only a small, broad hump at around 0.3–0.7K and continuously increasing values of C/T down to lowest temperature (0.1 K), and again a large linear term. As in soft carbons the anomalies are greatly diminished by heat treatment to 2700°C or above, but are brought back by neutron irradiation. Since all the facts point toward a localized free electronic spin origin of the anomalies, in the third part a condensed discussion of the electron spin effects in carbons is presented. After a short description of the ESR of conduction carriers in well-graphitized materials, the technique of separation of the localized spin from conduction carrier contribution and the mixing of g- values and of the widths by exchange in carbons are discussed. Information on the heat treatment dependence, neutron irradiation, and thermal anneal and on doping effects for various types of carbons heat treated above 1500°C follows. Next, the formation of localized spins in carbonization and condensation processes of organic materials, and their subsequent gradual decay after appearance of conductivity, with an exchange narrowing of the ESR line somewhat after the concentration crosses its peak, as well as production of artificial spin centers by gas reactions, all in temperature range below 1000°C, are described. Finally the difficulties and uncertainties in obtaining data, caused by broadening effects in the heat treatment range 1000–1500°C, are pointed out. In the last part of this review the spin concentration data supplied by ESR studies are compared with specific heat data. It turns out that only about a quarter of all localized spins are condensing in the two peaks, the rest of them (or a part) being involved in the linear term anomaly. Whereas a general picture of the specific heat anomalies can be outlined, none of the known exchange interactions can explain the values at which the fractions condense into presumably an antiferromagnetic phase, nor the high values necessary for the conflict areas to be responsible for the linear term. Thus the most basic questions remain unanswered and further experimental studies, coupled with some theoretical attempts, are badly needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Brooks and G. H. Taylor, On Formation of Some Graphitizable Carbons, in Chemistry and Physics of Carbons, P. L. Walker Jr., ed., (Marcel Dekker, New York, 1968), Vol. 4, p. 243.

    Google Scholar 

  2. L. L. Ban, D. Crawford, and H. Marsh, in Extended Abstracts of 12th U.S. Conference on Carbon (Am. Carbon Society, 1975), p. 119.

  3. K. Noto, K. Saito, K. Kawamura, and T. Tsuzuku, Japan. J. Appl. Phys. 14, 480 (1975), and references cited therein.

    Google Scholar 

  4. D. B. Fischbach, in Chemistry and Physics of Carbon, P. L. Walker Jr., ed. (Marcel Dekker, New York, 1971), Vol. 7, p. 1.

    Google Scholar 

  5. A. Pacault, in Chemistry and Physics of Carbon, P. L. Walker Jr., ed. (Marcel Dekker, New York, 1971), Vol. 7, p. 107.

    Google Scholar 

  6. J. H. W. Simmons, Radiation Damage in Graphite (Pergamon Press, 1965).

  7. S. Mrozowski, Carbon 9, 97 (1971).

    Google Scholar 

  8. A. Marchand, Electronic Properties of Doped Carbons, in Chemistry and Physics of Carbon, P. L. Walker Jr., ed. (Marcel Dekker, New York, 1971), Vol. 7, p. 155.

    Google Scholar 

  9. A. Magnus, Ann. Physik 70, 303 (1923).

    Google Scholar 

  10. W. DeSorbo and W. W. Tyler, J. Chem. Phys. 21, 1660 (1953).

    Google Scholar 

  11. U. Bergenlid, R. W. Hill, E. J. Webb, and J. Wilks, Phil. Mag. 45, 851 (1954).

    Google Scholar 

  12. P. H. Keesom and N. Pearlman, Phys. Rev. 99, 1119 (1955).

    Google Scholar 

  13. W. DeSorbo and G. E. Nichols, J. Phys. Chem. Solids 6, 352 (1958).

    Google Scholar 

  14. B. J. C. Van der Hoeven and P. H. Keesom, Phys. Rev. 130, 1318 (1963).

    Google Scholar 

  15. B. J. C. Van der Hoeven, P. H. Keesom, J. W. McClure, and G. Wagoner, Phys. Rev. 152, 796 (1966).

    Google Scholar 

  16. J. C. Bowman and J. A. Krumhansl, J. Phys. Chem. Solids 6, 367 (1958).

    Google Scholar 

  17. K. Komatsu, J. Phys. Chem. Solids 6, 380 (1958).

    Google Scholar 

  18. W. N. Reynolds, Physical Properties of Graphite (Elsevier, 1968), pp. 67ff.

  19. K. Komatsu, J. Phys. Chem. Solids 25, 707 (1964).

    Google Scholar 

  20. W. DeSorbo and W. W. Tyler, J. Chem. Phys. 26, 244 (1957).

    Google Scholar 

  21. O. Kimura and S. Suzuki, in Symposium on Carbon (Tokyo, 1964), Abstract VI-1.

  22. P. Delhaes and Y. Hishiyama, Carbon 8, 31 (1970).

    Google Scholar 

  23. A. S. Vagh and S. Mrozowski, Carbon 13, 301 (1975).

    Google Scholar 

  24. B. L. Bailey, U. S. Patent 2, 582, 764.

  25. K. Kamiya, S. Mrozowski, and A. S. Vagh, Carbon 10, 267 (1972).

    Google Scholar 

  26. S. Mrozowskiand A. S. Vagh, Carbon 14, 211 (1976).

    Google Scholar 

  27. A. S. Vagh and S. Mrozowski, Carbon 11, 151 (1973).

    Google Scholar 

  28. A. S. Vagh and S. Mrozowski, Carbon 16, 163 (1978).

    Google Scholar 

  29. P. Delhaes, M. Lemerle, and G. Blondet-Gonte, C. R. Acad. Sc. Paris 272, 1285 (1971).

    Google Scholar 

  30. Y. Takahashi and E. F. J. Westrum, J. Chem. Thermodynamics 2, 847 (1970).

    Google Scholar 

  31. A. S. Vagh, B. Carton, and S. Mrozowski, Carbon 12, 645 (1974).

    Google Scholar 

  32. S. Mrozowski, S. Orzeszko, and A. S. Vagh, Carbon 12, 651 (1974).

    Google Scholar 

  33. E. Michael, B. Myers, and S. Mrozowski, Carbon 15, 424 (1977).

    Google Scholar 

  34. M. Jirmanus, H. H. Sample, and L. J. Neuringer, J. Low Temp. Phys. 20, 229 (1975).

    Google Scholar 

  35. J. C. Williams, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N.Y. (1972).

    Google Scholar 

  36. J. A. Katerberg and A. C. Anderson, J. Low Temp. Phys. 30, 739 (1978).

    Google Scholar 

  37. F. Carmona, P. Delhaes, J. L. Tholence, and J. C. Lasjaunias, in Extended Abstracts of 13th U.S. Conference on Carbon (Am. Carbon Society, 1977), p. 252.

  38. G. Blondet-Gonte, P. Delhaes, and M. Daurel, Solid State Comm. 10, 819 (1972).

    Google Scholar 

  39. P. Delhaes, J. C. Rouillon, J. P. Manceau, D. Geurard, and A. Herold, J. Phys. (Paris) Lett. 37, L127 (1976).

    Google Scholar 

  40. T. Kondow, U. Mizutani, and T. B. Massalski, Mat. Sci. Eng. 31, 267 (1977).

    Google Scholar 

  41. L. S. Singer, in Proc. 5th Conf. on Carbon (Pergamon Press, 1963), Vol. 2, p. 37.

  42. I. C. Lewis and L. S. Singer, ESR and Mechanism of Carbonization, to appear in Chemistry and Physics of Carbon, Vol. 15 (Marcel Dekker, New York, 1979).

    Google Scholar 

  43. S. Mrozowski, ESR in Chars, Carbons and Graphites, in preparation for Chemistry and Physics of Carbon.

  44. P. Delhaes and A. Marchand, Carbon 6, 257 (1968).

    Google Scholar 

  45. A. Kreisler, Ph.D. Thesis, Universite de Paris VI (1973).

  46. L. S. Singer and G. Wagoner, in Proc. 5th Conf. on Carbon (Pergamon Press, 1963), Vol. 2, p. 65.

  47. G. Arnold and S. Mrozowski, Carbon 6, 243 (1968).

    Google Scholar 

  48. J. W. McClure and Y. Yafet, in Proc. 5th Conf. on Carbon, (Pergamon Press, 1962), Vol. 1, p. 22.

  49. S. Mrozowski, Carbon 4, 227 (1966).

    Google Scholar 

  50. S. Mrozowski, Carbon 3, 305 (1965).

    Google Scholar 

  51. A. Marchand and J. Amiell, Carbon 8, 707 (1970).

    Google Scholar 

  52. A. Marchand and P. Delhaes, in Proc. 12th Colloque Ampere (North-Holland, 1963), p. 135.

  53. S. Mrozowski, Bull. APS 8, 344 (1963).

    Google Scholar 

  54. F. Carmona, Ph.D. Thesis, Universite de Bordeaux I (1976).

  55. P. Delhaes and F. Carmona, Carbon 10, 677 (1972).

    Google Scholar 

  56. S. Schultz, M. R. Shanabarger, and P. M. Platzman, Phys. Rev. Lett. 19, 749 (1967).

    Google Scholar 

  57. G. Arnold, Carbon 5, 33 (1967).

    Google Scholar 

  58. H. Estrade-Szwarckopf, J. Conard, and J. Mering, Carbon 13, 11 (1975).

    Google Scholar 

  59. S. Toyoda, S. Sugawara, T. Furuta, and H. Honda, Carbon 8, 473 (1970).

    Google Scholar 

  60. D. Robson, F. Y. I. Assabghy, and D. J. E. Ingram, J. Phys. D: Appl. Phys. 4, 1326 (1971).

    Google Scholar 

  61. S. Orzeszko and K. T. Yang, Carbon 12, 493 (1974).

    Google Scholar 

  62. T. Kester and P. Servoz-Gavin, Phys. Lett. 20, 357 (1966).

    Google Scholar 

  63. T. Kester, Ph.D. Thesis, Universite de Grenoble (1966).

  64. Y. Hishiyama, S. Mrozowski, and A. S. Vagh, Carbon 9, 367 (1971).

    Google Scholar 

  65. S. Mrozowski, Carbon 6, 841 (1968).

    Google Scholar 

  66. J. Bulawa, S. Mrozowski, and A. S. Vagh, Carbon 10, 207 (1972).

    Google Scholar 

  67. S. Mrozowski and D. Wobschall, J. Chim. Phys. 1960, 915.

  68. H. Akamatu, S. Mrozowski, and D. Wobschall, in Proc. 3rd Conf. on Carbon (Pergamon Press, 1957), p. 135; R. Mangiaracina and S. Mrozowski, in Proc. 5th Conf. on Carbon (Pergamon Press, 1963), Vol. 2, p. 89.

  69. S. Mrozowski, in Proc. 4th Conf. on Carbon (Pergamon Press, 1960), p. 271.

  70. S. Mrozowski and A. Gutsze, Carbon 15, 335 (1977).

    Google Scholar 

  71. A. Marchand, P. Delhaes, and J. Zanchetta, J. Chim. Phys. 60, 688 (1963).

    Google Scholar 

  72. S. Mrozowski, in Proc. 5th Conf. on Carbon (Pergamon Press, 1963), Vol. 2, p. 79.

  73. K. Antonowicz, in Proc. 5th Conf. on Carbon (Pergamon Press, 1962), Vol. 1, pp. 46, 56.

  74. S. Mrozowski, Bull. APS 10, 56 (1965); Carbon 3, 328 (1965).

    Google Scholar 

  75. S. Mrozowski, to appear inCarbon 17 (1979).

  76. S. Mrozowski, Carbon 11, 433 (1973).

    Google Scholar 

  77. A. Gutsze, Carbon 15, 343 (1977).

    Google Scholar 

  78. S. Mrozowski, paper in preparation for Carbon.

  79. J. B. Donnet, M. Rigaut, and R. Furstenberger, Carbon 11, 153 (1973).

    Google Scholar 

  80. R. C. Zeller and R. O. Pohl, Phys. Rev. 4, 2029 (1971).

    Google Scholar 

  81. R. B. Stephens, G. S. Cieloszyk, and G. L. Salinger, Phys. Lett. 38A, 215 (1972).

    Google Scholar 

  82. P. Delhaes and G. Blondet-Gonte, Phys. Lett. 40A, 242 (1972).

    Google Scholar 

  83. E. S. R. Gopal, Specific Heats at Low Temperatures (Plenum Press, New York, 1966).

    Google Scholar 

  84. C. L. Chien and R. Hasegawa, Bull. APS 21, 468 (1976).

    Google Scholar 

  85. P. W. Anderson, B. L. Halperin, and C. M. Varma, Phil. Mag. 25, 1 (1972).

    Google Scholar 

  86. T. A. Kaplan, S. D. Mahanti and W. M. Hartman, Phys. Rev. Lett. 27, 1756 (1971).

    Google Scholar 

  87. G. Garten, M. J. M. Leask, W. P. Wolf, and A. F. G. Wyatt, J. Appl. Phys. 34, 1083 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrozowski, S. Specific heat anomalies and spin-spin interactions in carbons: A review. J Low Temp Phys 35, 231–298 (1979). https://doi.org/10.1007/BF00115580

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115580

Keywords

Navigation