Skip to main content
Log in

Superconducting and normal state properties of dilute alloys of LaSn3 containing Nd impurities

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The results of an investigation of the superconducting and normal state physical properties of (LaNd)Sn3 alloys are reported. Superconducting state data are presented describing the depression of the superconducting transition temperature T cwith Nd impurity concentration, the reduction of the reduced jump in heat capacity ΔC/ΔC 0 with decreasing reduced superconducting transition temperature T c/Tc0, and the pressure dependence of T c. Normal state data for the temperature dependences of the magnetic susceptibility and heat capacity demonstrate the importance of crystalline electric field effects in the physical behavior of (LaNd)Sn3 alloys and indicate that Nd interimpurity magnetic interactions and possibly a small amount of Nd-Sn antisite disorder are manifested in the experimental results. Theories based on an isotropic exchange depairing model are unable to give a satisfactory account of all of the experimental data, suggesting that the physical properties of(LaNd)Sn3 alloys may be modified by processes involving the orbital exchange scattering of host conduction electrons by the Nd impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. DeLong, Ph.D. Thesis, University of California, San Diego (1977), unpublished.

    Google Scholar 

  2. L. E. DeLong, M. B. Maple, R. W. McCallum, L. D. Woolf, R. N. Shelton, and D. C. Johnston, J. Low Temp. Phys. 34, 445 (1979).

    Google Scholar 

  3. L. E. DeLong, M. B. Maple, M. Tovar, and D. C. Johnston, Bull. Am. Phys. Soc. 23, 307 (1978).

    Google Scholar 

  4. W. Schmid, E. Umlauf, C. P. Bredl, and F. Steglich, J. Phys.(Paris) 39 (Coll. C6), C6–880 (1978).

    Google Scholar 

  5. C. D. Bredl, F. Steglich, W. Schmid, and E. Umlauf, J. Phys. (Paris) 39 (Coll. C6), C6–882 (1978).

    Google Scholar 

  6. W. Schmid and E. Umlauf, Commun. Phys. 1, 67 (1976).

    Google Scholar 

  7. A. M. Toxen, P. C. Kwok, and R. J. Gambino, Phys. Rev. Lett. 21, 792 (1968).

    Google Scholar 

  8. J. Keller and P. Fulde, J. Low Temp. Phys. 4, 289 (1971).

    Google Scholar 

  9. M. B. Maple, Appl. Phys. 9, 179 (1976), and references therein.

    Google Scholar 

  10. L. E. DeLong and M. B. Maple, in High-Pressure Science and Technology, K. D. Timmerhaus and M. S. Barber, eds. (Plenum, New York, 1979), Vol. I, pp. 320–328.

    Google Scholar 

  11. A. I. Abou-Aly, S. Bakanowski, N. F. Berk, J. E. Crow, and T. Mihalisin, in Magnetism and Magnetic Materials—1975 (AIP Conf. Proc. No. 29, 1976), p. 358.

    Google Scholar 

  12. M. B. Maple, L. E. DeLong, and B. C. Sales, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner and L. Eyring, eds. (North-Holland, Amsterdam, 1978), Chapter 11.

    Google Scholar 

  13. L. E. DeLong, M. B. Maple, and M. Tovar, Solid State Comm. 26, 469 (1978).

    Google Scholar 

  14. J. Takeuckhi and Y. Masuda, J. Phys. Soc. Japan 44, 402 (1977).

    Google Scholar 

  15. L. E. DeLong, R. W. McCallum, W. A. Fertig, M. B. Maple, and J. G. Huber, Solid State Comm. 22, 245 (1977).

    Google Scholar 

  16. S. Bakanowski, J. E. Crow, and T. Mihalisin, Solid State Comm. 22, 241 (1977).

    Google Scholar 

  17. E. Bucher, K. Andres, J. P. Maita, and G. W. Hull, Helv. Phys. Acta 41, 723 (1968).

    Google Scholar 

  18. R. W. McCallum, W. A. Fertig, C. A. Luengo, M. B. Maple, E. Bucher, J. P. Maita, A. R. Sweedler, L. Mattix, P. Fulde, and J. Keller, Phys. Rev. Lett. 34, 1620 (1975).

    Google Scholar 

  19. J. Keller and P. Fulde, J. Low Temp. Phys. 12, 63 (1973).

    Google Scholar 

  20. L. E. DeLong, R. W. McCallum, and M. B. Maple, in Low Temperature Physics LT14, M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 2, pp. 541–544.

    Google Scholar 

  21. A. I. Abou-Aly, S. Bakanowski, N. F. Berk, J. E. Crow, and T. Mihalisin, Phys. Rev. Lett. 35, 1387 (1975).

    Google Scholar 

  22. P. Lethuillier and P. Haen, Phys. Rev. Lett. 35, 1391 (1975).

    Google Scholar 

  23. S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev. A 136, 1500 (1964).

    Google Scholar 

  24. A. A. Abrikosov and L. P. Gor'kov, Sov. Phys.—JETP 12, 1243 (1961).

    Google Scholar 

  25. L. B. Welsh, A. M. Toxen, and R. J. Gambino, Phys. Rev. B 4, 2921 (1971).

    Google Scholar 

  26. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya, Prog. Theor. Phys. (Kyoto) 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893 (1957).

    Google Scholar 

  27. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  28. K. R. Lea, M. J. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).

    Google Scholar 

  29. K. W. H. Stevens, Proc. Royal Soc. Lond. A 65, 209 (1952).

    Google Scholar 

  30. C. Herring, in Magnetism, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1966), Vol. IV.

    Google Scholar 

  31. B. G. Wybourne, J. Chem. Phys. 34, 279 (1961).

    Google Scholar 

  32. J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford Univ. Press, London, 1966), Chapter IX.

    Google Scholar 

  33. M. H. van Maaren and E. E. Havinga, in Low Temperature Physics—LT 13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1974), Vol. 3, p. 392.

    Google Scholar 

  34. P. K. Roy, J. L. Levine, and A. M. Toxen, in Low Temperature Physics—LT 13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1974), Vol. 3, p. 395.

    Google Scholar 

  35. R. W. McCallum, Ph.D. Thesis, University of California, San Diego (1977), unpublished.

    Google Scholar 

  36. J. Keller and P. Holzer, in Crystal Field Effects in Metals and Alloys, A. Furrer, ed. (Plenum Press, New York, 1977), p. 293.

    Google Scholar 

  37. P. Fulde and I. Peschel, Adv. Phys. 21, 1 (1972).

    Google Scholar 

  38. P. Lethuillier, J. Pierre, K. Knorr, and W. Drexel, J. Phys. (Paris) 36, 329 (1975).

    Google Scholar 

  39. L. L. Hirst, Adv. Phys. 27, 231 (1978).

    Google Scholar 

  40. M. H. van Maaren and W. van Haeringen, in Low Temperature Physics—LT 14, M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 2, pp. 533–536.

    Google Scholar 

  41. P. Lethuillier, Phys. Rev. B 12, 4836 (1975).

    Google Scholar 

  42. P. Lethuillier, D.Sci. Thesis, University of Grenoble (1976), unpublished.

  43. R. P. Guertin, J. E. Crow, A. R. Sweedler, and S. Foner, Solid State Comm. 13, 25 (1973).

    Google Scholar 

  44. H. E. Hoenig, H. Happel, H. K. Njoo, and H.Seim, in Proceedings of the First Conference on Crystalline Electric Field Effects in Metals and Alloys, Montreal, 1974, R. A. B. Devine, ed. (unpublished), pp. 298–322.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the U.S. Department of Energy under Contract No. Ey-76-S-03-0034-PA227-3.

Fellow of the Consejo Nacional de Investigaciones, Cientificas y Tecnicas, de la Republica Argentina; leave from Centro Atomico Bariloche, Bariloche, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLong, L.E., Tovar, M., Woolf, L.D. et al. Superconducting and normal state properties of dilute alloys of LaSn3 containing Nd impurities. J Low Temp Phys 38, 119–147 (1980). https://doi.org/10.1007/BF00115272

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115272

Keywords

Navigation