Skip to main content
Log in

The heat capacity of uranium monoarsenide

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The specific heats of UAs and the isostructural nonmagnetic homolog ThAs have been measured in the temperature range 5–300 K. While the latter compound displays a regular smooth curve C p (T), UAs shows two sharp anomalies. The first anomaly, around 64 K, may be ascribed to the magnetic transition from type IA to type I antiferromagnetic structure; the second anomaly, at 122.8 K, corresponds to the Néel temperature. An analysis of the experimental curve C p (T) for UAs has been carried out by several different methods to get the magnetic contribution to the specific heat with the best possible accuracy. The resulting magnetic entropy depends on the method and its maximum value at 250 K is 0.8 R ln 4, assuming a high-temperature value of the electronic heat capacity coefficient 〈γ〉 − 33 mJ/K2 mole. No anomaly at 41 K was observed whatever thermal treatment was used to prepare the UAs samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Counsell, R. M. Dell, and J. F. Martin, Trans. Faraday Soc. 62, 1736 (1966).

    Google Scholar 

  2. E. F. Westrum, Jr. and C. M. Barber, J. Chem. Phys. 45, 635 (1966).

    Google Scholar 

  3. J. F. Counsell, R. M. Dell, A. R. Junkison, and J. F. Martin, Trans. Faraday Soc. 63, 72 (1967).

    Google Scholar 

  4. H. Yokokawa, Y. Takahashi, and T. Mukaibo, in Thermodynamics of Nuclear Materials (IAEA, Vienna, 1975), Vol. 2, p. 419.

    Google Scholar 

  5. J. F. Counsell, J. F. Martin, R. M. Dell, and A. R. Junkison, in Thermodynamics of Nuclear Materials (IAEA, Vienna, 1967), p. 385.

    Google Scholar 

  6. A. Blaise, J. Phys. (Paris) 40 (Coll. 4), C4–49 (1979).

    Google Scholar 

  7. R. Troć and Z. Kletowski, Bull. Acad. Polon. Sci. Ser. Sci. Chim. 22, 621 (1974).

    Google Scholar 

  8. P. J. Markowski, A. Blaise, and Z. Henkie, Rocz. Chem. 51, 1027 (1977).

    Google Scholar 

  9. O. L. Kruger and J. B. Moser, J. Phys. Chem. Solids 28, 2321 (1967).

    Google Scholar 

  10. R. Benz, J. Nucl. Mat. 25, 233 (1968).

    Google Scholar 

  11. J. Leciejewicz, A. Murasik, and R. Troć, Phys. Stat. Sol. 30, 157 (1968).

    Google Scholar 

  12. G. H. Lander, M. H. Mueller, and J. F. Reddy, Phys. Rev. B 6, 1880 (1972).

    Google Scholar 

  13. A. Murasik, J. Leciejewicz, H. Ptasiewicz-Bak, R. Troć, A. Zygmunt, and Z. Zoŀnierek, in Proc. 2nd Intern. Conf. on the Electronic Structure of the Actinides, J. Mulak, W. Suski, and R. Troć, eds. (Ossolineum, Wrocŀaw, 1977), p. 405.

    Google Scholar 

  14. H. Bartholin and O. Vogt, Private communication.

  15. J. A. C. Marples, C. F. Sampson, S. A. Wedgwood, and M. Kuznietz, J. Phys. C: SolidState Phys. 8, 708 (1975).

    Google Scholar 

  16. M. Obolenski and R. Troć, in Proc. 2nd Int. Conf. on the Electronic Structure of the Actinides, J. Mulak, W. Suski, and R. Troć, eds. (Ossolineum, Wrocław, 1977), p. 397.

    Google Scholar 

  17. A. Furrer, A. Murasik, and O. Vogt, Helv. Phys. Acta 5, 447 (1977).

    Google Scholar 

  18. W. Trzebiatowski, A. Sepichowska, and A. Zygmunt, Bull. Acad. Polon. Sci. Ser. Sci. Chim. 14, 495 (1966).

    Google Scholar 

  19. R. Lagnier, J. Pierre, and M. J. Mortimer, Cryogenics 17, 349 (1967).

    Google Scholar 

  20. V. Maurice, J. L. Boutard, and D. Abbe, J. Phys. (Paris) 40 (Coll. 4), C4–140 (1979).

    Google Scholar 

  21. R. Troć and D. J. Lam, Phys. Stat. Sol. (b) 65, 317 (1974).

    Google Scholar 

  22. R. Ramji Rao and J. V. S. S. Narayana Murty, J. Low. Temp. Phys. 33, 413 (1978).

    Google Scholar 

  23. E. F. Westrum, Jr., R. R. Walters, H. E. Flotow, and D. W. Osborne, J. Chem. Phys. 48, 155 (1968).

    Google Scholar 

  24. H. F. Flotow, D. W. Osborne, and R. R. Walters, J. Chem. Phys. 55, 880 (1971).

    Google Scholar 

  25. R. J. Trainor, M. B. Brodsky, and G. S. Knapp, in Plutonium and Other Actinides, H. Blank and R. Lindner, eds. (North-Holland, Amsterdam, 1976), p. 475.

    Google Scholar 

  26. M. Steinitz and J. Grunzweig-Genossar, J. Phys. (Paris) 40 (Coll. 4), C4–34 (1979).

    Google Scholar 

  27. J. Danan, C. H. de Novion, Y. Guerin, and F. A. Wedgwood, J. Phys. (Paris) 37, 1169 (1976).

    Google Scholar 

  28. G. H. Lander, Private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaise, A., Troć, R., Lagnier, R. et al. The heat capacity of uranium monoarsenide. J Low Temp Phys 38, 79–92 (1980). https://doi.org/10.1007/BF00115269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115269

Keywords

Navigation