Skip to main content
Log in

Cloud chemistry effects on tropospheric photooxidants in polluted atmosphere — Model results

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The mathematical model presented in this paper describes in detail the gas-phase chemistry (22 reactions), gas-phase/liquid-phase equilibrium (18 equilibria) and liquid-phase chemistry (57 reactions and equilibria) in a stratiform cloud system. The model is used to analyze the influence of the liquid phase on the photooxidant formation and destruction for different gaseous SO2 concentrations with and without consideration of organic aqueous phase chemistry. It has been shown that for [SO2]>1 ppb the cloud is quantitatively a sink for H2O2, OH, HO2 and O3. The ozon destruction via O3+O2 -, which is most important in remote areas, is in polluted areas only significant at summer days. The role of organic components in cloud water consists in the transformation OH → HO2 where HO2 is further transformed into H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes R.A. (1977) ‘A eumulus parametrization scheme utilizing a one dimensional cloud model’, Mon. Wea. Rev. 105, 270–286

    Article  Google Scholar 

  • Betterton E.A. and Hoffmann M.R. (1988) ‘Oxidation of aqueous SO2 by peroxomonosulfate’, J. Phys. Chem. 92, 5962–5965

    Article  Google Scholar 

  • Chameides W.L. and Davis D.D. (1982) ‘The free radical chemistry of cloud droplets and its impact upon the composition of rain’, J. Geophys. Res. 87, 4863–4878

    Article  Google Scholar 

  • Chameides W.L. (1984) ‘The photochemistry of a remote marine stratiform cloud’, J. Geophys. Res. 89, 4739–4755

    Article  Google Scholar 

  • Chameides W.L. (1986) ‘Possible role of NO3 in the nighttime chemistry of a cloud’, J. Geophys. Res. 91, 5331–5337

    Article  Google Scholar 

  • Clarke A.G. and Radojevic H. (1987) ‘Oxidation of SO2 in rainwater and its role in acid rain chemistry’, Atm. Env. 21, 1115–1123

    Article  Google Scholar 

  • Cotton F.A., Wilkinson G. (1967) ‘Anorganische Chemie’, 095 Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Deister U.; Neeb R.; Helas P. and Warneck P. (1986), ‘Temperature dependence of the equilibrium CH2(OH)2+HSO3 -=H2O+CH2(OH)SO3 in aqueous solution’, J. Phys. Chem. 90, 3213–3217

    Article  Google Scholar 

  • Faust B.C. and Hoigné J. (1990) ‘Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain’, Atm. Env. 24A, 79–89

    Article  Google Scholar 

  • Graedel T.E. and Goldberg R.I. (1983) ‘Kinetic studies of raindrop chemistry, 1. Inorganic and organic processes’, J. Geophys. Res. 88, 865–882

    Google Scholar 

  • Graedel T.E.; Mandich M.L. and Weschler C.J. (1986) ‘Kinetic model studies of atmospheric droplet chemistry, 2. Homogeneous transition metal chemistry in raindrop’, J. Geophys. Res. 91, 5205–5221

    Article  Google Scholar 

  • Huie R.E. and Neta P. (1987) ‘Rate constants for some oxidations of S(IV) by radicals in aqueous solution’, Atm. Env. 21, 1743–1747

    Article  Google Scholar 

  • Jacob D.J. (1986) ‘Chemistry of OH in remote clouds and its role in the production of formic acid and peroxomono-sulfate’, J. Geophys. Res. 91, 9807–9826

    Article  Google Scholar 

  • Jaeschke W. (ed.) (1986) ‘Chemistry of multiphase atmospheric system’, Springer Berlin, Heidelberg

    Google Scholar 

  • Lee Y.N.; Shen J.; Klotz P.J.; Schwartz S.E. and Newman L. (1986) ‘Kinetics of hydrogen peroxide-sulfur (IV) reaction in rainwater collected at a Northeastern U.S. site’, J. Geophys. Res. 91, 13264–13274

    Article  Google Scholar 

  • Lelieveld D. and Crutzen P.J. (1990) ‘Influences of cloud photochemical processes on tropospheric ozone’, Nature 303, 227–233

    Article  Google Scholar 

  • Lind J.A. and Kok G.L. (1986) ‘Henry's law determination for aqueous solution of hydrogen peroxide, methylhydroperoxide and peroxyacetic acid’, J. Geophys. Res. 91, 7889–7895

    Article  Google Scholar 

  • Lind J.A.; Lazrus A.L. and Kok G.L. (1987) ‘Aqueous phase oxidation of sulfur (IV) by hydrogen peroxide, methyl-hydroperoxide and peroxyacetic acid’, J. Geophys. Res. 92, 4171–4177

    Article  Google Scholar 

  • Lurmann F.W.; Lloyd A.C. and Atkinson R. (1986) ‘A chemical mechanism for use in long-range transport/acid deposition modeling’, J. Geophys. Res. 91, 10905–10936

    Article  Google Scholar 

  • Marsh A.R.W. and McElroy W.J. (1985) ‘The dissociation constant and Henry's law constant of HCl in aqueous solution’, Atm. Env. 19, 1075–1080

    Article  Google Scholar 

  • Mauersberger G. and Möller D. (1990) ‘Auswaschen von Gasen und Aerosolen durch Niederschläge unter Berücksichtigung einer komplexen Flüssigphasenchemie, 1. Modellentwicklung’, Z. f. Meteorol. 40, 322–329

    Google Scholar 

  • McElroy W.J. (1986) ‘Sources of hydrogen peroxide in cloudwater’, Atm. Env. 20, 427–438

    Article  Google Scholar 

  • Möller D. and Mauersberger G. (1990) ‘Auswaschen von Gasen und Aerosolen durch Niederschläge unter Berücksichtigung einer komplexen Flüssigphasenchemie, 2. Modellergebnisse für Regentropfen’, Z. f. Meteorol. 40, 330–339

    Google Scholar 

  • Möller, D. and Mauersberger, G. (1991) ‘Modelling of cloud water chemistry in polluted areas’ Proc. of the 5th Int. Conf. on Precipit. Scav. and Atmosphere-Surface Exchange Proc., Richland (USA)

  • Nahir T.M. and Dawson G.A. (1987) ‘Oxidation of sulfur dioxide by ozone in highly dispersed water droplets’, J. Atm. Chem. 5, 373–383

    Article  Google Scholar 

  • Schwartz S.E. (1984) ‘Gas- and aqueous-phase chemistry of HO2 in liquid water clouds’, J. Geophys. Res. 89, 11589–11598

    Article  Google Scholar 

  • Schwartz S.E. (1986) ‘Mass transport consideration pertinant to aqueous phase reactions of gases in liquid water clouds’, in W. Jaeschke (ed.) ‘Chemistry of multiphase atmospheric systems’, Springer Berlin, Heidelberg, pp. 415–472

    Chapter  Google Scholar 

  • Seigneur L. and Saxena P. (1984) ‘A study of atmospheric acid formation in different environments’, Atm. Env. 18, 2109–2124

    Article  Google Scholar 

  • Seigneur L. and Saxena P. (1985) ‘The impact of cloud chemistry on photochemical oxidant formation’, Water, Air, Soil Poll. 24 (4), 419–430

    Article  Google Scholar 

  • Turco, R.P.; Toon, O.B.; Whitten, R.C.; Keese, R.G. and Hamill, P. (1982) ‘Importance of heterogeneous processes to tropospheric chemistry: studies with a one-dimensional model’, in ‘Heterogeneous Atmospheric Chemistry’, Geophys. Monograph Series, Vol. 26, 231–240

  • Walcek C.J. and Taylor G.R. (1986) ‘A theoretical method for computing vertical distributions of acidity and sulfat production within cumulus clouds’, J. Atm. Sci. 43, 339–355

    Article  Google Scholar 

  • Weschler C.J.; Mandich M.L. and Graedel T.E. (1986) ‘Speciation, photosensitivity and reactions of transition metal ions in atmospheric droplets’, J. Geophys. Res. 91, 5189–5204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, D., Mauersberger, G. Cloud chemistry effects on tropospheric photooxidants in polluted atmosphere — Model results. J Atmos Chem 14, 153–165 (1992). https://doi.org/10.1007/BF00115231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115231

Keywords

Navigation