Skip to main content
Log in

Kinetic equations for neutral Fermi liquids in DC magnetic fields. The nonlinear and particle-hole asymmetric effects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Since nonlinear effects are of the same importance as the particle-hole asymmetry (PHA) effects for normal Fermi liquids, at least for some physical situations, a formalism is presented taking both into account. Moreover, because the nonlinearity or PHA is easiest to induce by strong magnetic fields, weak polarization effects are also included. The kinetic equations for the weakly coupled density and magnetization modes are obtained under these circumstances. They lead to an additional effective mass equation in comparison to the Landau formula, joining the suitable angular average of the effective interaction of triples of quasiparticles with the gradient of the two-quasiparticle interaction with PHA effects included. The equations are investigated in detail for ac magnetic field much smaller than the dc field in two cases: (1) at almost equilibrium magnetization of the sample and (2) at almost equilibrium (in the length) magnetization precessing around a dc field tipped to it by an angle θ # 0. In the first case, the coupling of the longitudinal magnetization to the density modes should lead to a rather detectable excitation of the zero sound by the ac field longitudinal with respect to the dc field. In the second case, the coupling of the spin waves of the magnetization, transverse with respect to the tipped magnetic moment, to the zero sound by virtue of the polarization effects could lead to the interesting effects discussed. Moreover, the possibility of second harmonic generation in the zero-sound channel by the ac field in the nonlinear regime is also noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Silin, Zh. Eksp. Teor. Fiz. 33, 1227 (1957) [Sov. Phys. JETP 6, 945 (1958)].

    Google Scholar 

  2. L. D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1957)].

    Google Scholar 

  3. P. M. Platzman and P. A. Wolff, Phys. Rev. Lett. 18, 280 (1967).

    Google Scholar 

  4. S. Schultz and G. Dunifer, Phys. Rev. Lett. 18, 283 (1967).

    Google Scholar 

  5. V. P. Silin, Appendix, in: A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967) (in Russian).

    Google Scholar 

  6. A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. Peletminskii, Spin Waves (Amsterdam, North-Holland, 1968).

    Google Scholar 

  7. A. A. Abrikosov, Introduction to the Theory of Normal Metals (Academic Press, New York, 1972), Chapter 14.

    Google Scholar 

  8. P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic Press, New York, 1973), Chapter X.58.

    Google Scholar 

  9. G. Baym and C. J. Pethick, in: The Physics of Liquid and Solid Helium, K. H. Benneman and J. B. Ketterson, eds. (Wiley, New York, 1978), Part I, Chapter 11.

    Google Scholar 

  10. L. R. Corruncini, D. D. Osheroff, D. M. Lee, and R. C. Richardson, J. Low Temp. Phys. 8, 229 (1972).

    Google Scholar 

  11. D. Candela, N. Masuhara, D. S. Sherill, and D. O. Edwards, J. Low Temp. Phys. 63, 369 (1986).

    Google Scholar 

  12. R. M. Bowley and J. R. Owers-Bradley, J. Low Temp. Phys. 63, 331 (1986).

    Google Scholar 

  13. J. Czerwonko, Physica 143A, 414 (1987).

    Google Scholar 

  14. A. J. Leggett and M. J. Rice, Phys. Rev. Lett. 20, 586 (1968).

    Google Scholar 

  15. A. J. Leggett, J. Phys. C 3, 448 (1970).

    Google Scholar 

  16. J. Czerwonko, Jpn. J. Appl. Phys., Suppl. 26, 223 (1987).

    Google Scholar 

  17. S. Doniach, Phys. Rev. 177, 336 (1969).

    Google Scholar 

  18. R. S. Fishman and J. A. Sauls, Phys. Rev. B 31, 251 (1985).

    Google Scholar 

  19. J. M. Luttinger and P. Nozieres, Phys. Rev. 127, 1431 (1962).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, London, 1980), §§ 25, 58.

    Google Scholar 

  21. A. I. Akhiezer and S. V. Peletminskii, Methods of Statistical Physics (Nauka, Moscow, 1977), §§ 4.1, 6.3 (in Russian).

    Google Scholar 

  22. J. W. Serene, in: Quantum Fluids and Solids—1983 (Sanibel Island, Florida), Proceedings of the International Symposium on Quantum Fluids and Solids, A. Adams and G. G. Inas, eds. (AIP, New York, 1983).

    Google Scholar 

  23. E. Polturak, P. G. N. de Vegvar, E. K. Zeise, and D. M. Lee, Phys. Rev. Lett. 46, 1588 (1981).

    Google Scholar 

  24. J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).

    Google Scholar 

  25. J. A. Sauls and J. W. Serene, Physica 108B, 1137 (1981).

    Google Scholar 

  26. D. Pines and P. Nozieres, The Theory of Quantum Liquids, Vol. I: Normal Fermi Liquids (Benjamin, New York, 1966), Chapters 1.2 and 1.8.

    Google Scholar 

  27. L. Jacak, in: Proceedings of the 17th International Conference on Low Temperature Physics LT17, V. Eckern, A. Schmid, W. Weber, and W. Wuhl, eds. (North-Holland, Amsterdam, 1984), Part 2, p. 1255.

    Google Scholar 

  28. L. Jacak and I. Krzyżanowski, Acta Phys. Polon. A 65, 241 (1984).

    Google Scholar 

  29. J. B. Ketterson, Phys. Rev. Lett. 50, 259 (1983).

    Google Scholar 

  30. P. M. Richards, Phys. Rev. 132, 1867 (1963).

    Google Scholar 

  31. J. A. Sauls, Phys. Rev. Lett. 53, 106 (1984).

    Google Scholar 

  32. P. S. Kondratenko, Zh. Eksp. Teor. Phys. 46, 1438 (1964) [Sov. Phys. JETP 19, 972 (1964)].

    Google Scholar 

  33. J. Czerwonko, Physica 47, 294 (1970).

    Google Scholar 

  34. A. E. Meyerowich, J. Low Temp. Phys. 27, 271 (1982).

    Google Scholar 

  35. C. H. Aldrich and D. Pines, J. Low Temp. Phys. 32, 689 (1978).

    Google Scholar 

  36. K. Skold and C. A. Pelizzari, J. Phys. C 11, L589 (1978).

    Google Scholar 

  37. I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980), Chapter 8.9.

    Google Scholar 

  38. J. J. Sakurai, Modern Quantum Mechanics (Benjamin/Cummings, Menlo Park, 1985), Chapter 3.7.

    Google Scholar 

  39. A. J. Leggett, Ann. Phys. (N. Y.) 46, 76 (1968).

    Google Scholar 

  40. M. I. Kaganov and J. Czerwonko, Fiz. Nizk. Temp. 13, 1046 (1987).

    Google Scholar 

  41. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2 (Oxford, Pergamon, 1980), Chapter 2.

    Google Scholar 

  42. A. Erdelyi (ed.), Higher Transcendental Functions, Vol. 1 (McGraw-Hill, New York, 1953), Chapter 3.

    Google Scholar 

  43. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1976), §§ 39, 77, 79, 112, 115.

    Google Scholar 

  44. D. S. Greywall, Phys. Rev. 27, 274 (1983).

    Google Scholar 

  45. I. E. Dzyaloshinskii and L. P. Pitaevskii, Zh. Eksp. Teor. Phys. 36, 1797, 1959 [Sov. Phys. JETP 9, 1282 (1959)].

    Google Scholar 

  46. I. A. Akhiezer, Ukr. Fiz. Zh. 6, 435 (1961).

    Google Scholar 

  47. P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

    Google Scholar 

  48. R. Kubo, M. Toda, and N. Nashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics (Springer, New York, 1985), Chapter 5.

    Google Scholar 

  49. B. Heinrich and J. F. Cochran, Phys. Rev. Lett. 29, 1175 (1972).

    Google Scholar 

  50. M. I. Kaganov and H. Paasch, Zh. Eksp. Teor. Fiz. 70, 1112 (1976) [Sov. Phys. JETP 43, 580 (1976)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czerwonko, J. Kinetic equations for neutral Fermi liquids in DC magnetic fields. The nonlinear and particle-hole asymmetric effects. J Low Temp Phys 71, 17–48 (1988). https://doi.org/10.1007/BF00115039

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115039

Keywords

Navigation