Skip to main content
Log in

Preliminary measurements of the velocity distribution in a cylinder filled with liquid He II during spin-up

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

In a rotating He II-filled cylinder with an aspect ratio of 4.3 the transient evolution of the vorticity fields of the normal fluid and the superfluid component during spin-up are investigated. The acoustical method of measurement used utilizes the change of propagation time of first- and second-sound signals irradiated through a slit in the middle of the cylinder. The results of the first-sound measurements within the range 1.3 ≦ T ≦ 2.1 K essentially do not depend on temperature and, for the final state, indicate a lack of about 30% of vorticity compared to solid-body rotation. On the other hand, the results of the second-sound measurements are temperature-dependent and show that the superfluid component reaches solid-body rotation, while the normal fluid fraction seems to slip at the wall. Accordingly, the velocity in the inner part of the flow field adopts a value lower than one would expect from the present velocity of the wall, thus confirming the lack of vorticity observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Hall and W. F. Vinen, Proc. R. Soc. A 238, 204 (1956).

    Google Scholar 

  2. H. E. Hall and W. F. Vinen, Proc. R. Soc. A 238, 215 (1956).

    Google Scholar 

  3. J. T. Rough and M. L. Baehr, in Proceedings of the International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), p. 317.

    Google Scholar 

  4. R. A. Ashton, L. B. Opatowski, and J. T. Tough, Phys. Rev. Lett. 46, 658 (1981).

    Google Scholar 

  5. K. W. Schwarz, Phys. Rev. B 18, 245 (1978).

    Google Scholar 

  6. H. Borner, Mitteilungen Max-Planck-Institut für Strömungsforschung, 79 (1985).

  7. H. E. Hall, Adv. Phys. 9, 89 (1960).

    Google Scholar 

  8. J. D. Reppy and C. T. Lane, Phys. Rev. 140, A106 (1965).

    Google Scholar 

  9. E. L. Andronikashvili and I. P. Kaverkin, Zh. Eksp. Teor. Fiz. 28, 126 (1955) [Sov. Phys. JETP 1, 174 (1955)].

    Google Scholar 

  10. M. Albrecht, Max-Planck-Institut für Strömungsforschung, Bericht 13 (1986).

  11. T. Schmeling, Max-Planck-Institut für Strömungsforschung, Bericht 8 (1981).

  12. E. R. Benton and A. Clark, Annu. Rev. Fluid Mech. 6, 257 (1974).

    Google Scholar 

  13. W. Fiszdon and Z. Peradzynski, Ernst-Becker-Gedächtnis-Kolloquium, TH Darmstadt, HD Schriftenreihe Wissenschaft und Technik 28, 57 (1986).

    Google Scholar 

  14. W. Poppe, Max-Planck-Institut für Strömungsforschung, Bericht 6 (1987).

  15. J. R. Pellam, Phys. Rev. Lett. 5, 189 (1960).

    Google Scholar 

  16. R. N. Hills and P. H. Roberts, Arch. Rat. Mech. Anal. 66, 43 (1977).

    Google Scholar 

  17. H. P. Greenspan and L. N. Howard, J. Fluid Mech. 17(3), 385 (1963).

    Google Scholar 

  18. A. Warn-Varnas, W. W. Fowlis, S. Piacsek, and Sang Myung Lee, J. Fluid Mech. 85(4), 603 (1978).

    Google Scholar 

  19. Z. Peredzynski, Private communication.

  20. J. S. Tsakadze and L. V. Cheremisina, Zh. Eksp. Theor. Fiz. 50, 58 (1966) [Sov. Phys. JETP 23, 39 (1966)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, M. Preliminary measurements of the velocity distribution in a cylinder filled with liquid He II during spin-up. J Low Temp Phys 71, 1–15 (1988). https://doi.org/10.1007/BF00115038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115038

Keywords

Navigation